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We describe an optical system that allows for a direct experimental observation of the quantum
magnetic correlated dynamics of polarized light. By adjusting the Zeeman and the Raman fields, we could
realize a ferromagnetic phase, super-counter-fluidity phase, and antiferromagnetic phase of polarized
light, that are of interest for studying spin-dependent photon-photon interactions. We also design an
experimental protocol for the observation of these phases. Moreover, the technique of controlling
photospin correlation may be used for building quantum information devices.
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The observation of effective photonic repulsion [1] has
triggered exciting possibilities for exploring strongly cor-
related dynamics of an optical system [2– 4]. For example,
it is now possible to experimentally study the Mott
insulator-superfluid quantum phase transition of photons
[2,3], and to simulate the dynamics of the XY spin chains
[4]. Compared to other strongly correlated many particle
systems in condensed matter physics or cold atoms, an
optical system has the advantage of accessing to individ-
ual lattices, and it does not require nano-Kelvin tempera-
tures. Thus, it offers the ability to experimentally observe
quantum-many-body phenomena and design quantum-
mechanical devices for quantum information processes.

In this Letter, we explore spin-dependent photon-photon
correlation effects of polarized light. Very recently, the
magnetic effects of polarized light have been considered:
Onoda et al. considered the polarization-dependent Hall
effect of light [5], and Jonsson et al. considered photospin-
orbit coupling in photonic structures [6]. Experimentally,
Wilk produced a stream of single photons with alternating
circular polarizations [7], and Garcı́a-Maraver et al.
achieved a deterministic generation of polarization en-
tangled photons pairs [8].

In this work we setup an optical system consisting of
coupled polarization-degenerate microcavities with a
single V-type three-level atom within each cavity. We are
interested in the Mott regime where there is essentially one
photon per cavity. This technique, for the first time, pro-
vides a practical way to explore the quantum magnetic
correlation of polarized photons. By adjusting the
Zeeman or the Raman fields, the ground state of the system
may undergo a ferromagnetic phase, an antiferromagnetic
phase, or a super-counter-fluidity (SCF) phase, that breaks
the easy-plane U(1) symmetry. The SCF phase was first
predicted by Kuklov [9] for two-species ultracold atoms in
a commensurate optical lattice. Here we illustrate how to
implement this phase in an optical system and its experi-
mental detection. Furthermore, by controlling the spin
correlation of the photons, one might obtain photospin

ladder, that could be useful in the generation of the self-
ordered array of emitters with polarization entangled pho-
ton pairs.

The system under investigation is schematically de-
picted in Fig. 1(a). We have chosen a compressed 2D
hexagonal photonic crystal, where the lattice compression
is used to modify the in-plane bandstructure, and modify
the dominant Fourier components found in the defect

FIG. 1 (color online). (a) Schematic diagram of a compressed
2D hexagonal photonic crystal with a square supperlattice of
band gap cavities. The photonic crystal can be fabricated by
drilling through a thin membrane. Each cavity is defined by four
enlarged holes surrounding the red sphere (C2v symmetry point).
Photons hop between the nearest cavities with a hopping rate �.
To explore spin-dependent photon-photon interactions, we insert
a single V-type three-level atom into each cavity. (b) Brillouin
zone of the compressed 2D hexagonal lattice. This configuration
has A2 symmetry modes centered about the C2v symmetry points
(red spheres), with dominant Fourier components situated at
f�kx1;�kj2g. The electrical fields of these components are
perpendicular to the wave vectors, so each cavity supports
only � polarized light. (c) Schematic diagram showing the
pertinent V-type energy level within each atom-cavity system.
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modes [10]. Moreover, we have chosen the fundamental
even (TE-like) modes with the magnetic field perpendicu-
lar to the slab. Figure 1(b) shows the Brillouin zone of the
compressed hexagonal lattice, whose point group symme-
try is reduced from C6v to C2v by compression. The
evanescent coupling between cavities drops off exponen-
tially with distance, and we therefore consider nearest-
neighbor photon hopping. To achieve the regime where
photonic repulsion dominates over hopping, we have
chosen four nearest neighbors per cavity (coordination
number z � 4). The finite-difference time-domain
(FDTD) method showed that this configuration could yield
Q value in excess of 105 with mode volume of approxi-
mately 0.35 cubic half-wavelengths in vacuum.

To affect the photon-photon spin exchange interactions,
we insert a single V-type three-level atom into each cavity,
which can be realized using single-ion implantation tech-
niques [11]. Figure 1(c) shows the relevant levels involved,
the J � 0 ground state, jgi, and the J � 1 excited states,
labeled by magnetic sublevel jci � j�1i, jdi � j�1i, and
j0i. Each atom has two electric dipole transition energies
�c and �d. We further include a spatially dependent effec-
tive magnetic field Bi to vary coupling constants, with the
B field perpendicular to the two-dimensional photon crys-
tal slab. The B field defines the quantization axis of photo-
spin and lifts the degeneracy of the excited states,
producing an energy shift of the m � �1 states of ��Bi .
The cavities support only �� and �� photons with the
identical mode resonance frequency !, and the cavity-
mediated atom-photon coupling is denoted as �. We in-
troduce the detunings, �"i � �� �Bi , and �#i � �� �Bi ,
where � is the zero field detuning.

The Hamiltonian for the photospin interaction system is
described by the spin-dependent Janes-Cummings (JC)
model [12], combined with photon hopping between cav-
ities. In the rotating-wave approximation, the many-body
dynamics of the full system is given by the following
Hamiltonian
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where âyi;"�#��âi;"�#�� is the creation (annihilation) operator of
the left (right) circularly polarized photons or the photo-
spin up (down) states in each cavity mode. Â�i;c�d� and Âi;c�d�
correspond to the m � �1 state raising and lowering op-
erators of each atom. ��ij � � for the nearest neighbors
photon hopping, and ��ij � 0 otherwise.

We shall first solve the photospin Janes-Cummings
Hamiltonian, then derive an effective exchange interaction
model, and then give a detailed description of the experi-

mental signatures of these many-body phases. Though we
are considering one photon per cavity, the system can exist
in excited states where the cavities are multiply occupied.
We confine ourselves to the regime where these energies
are large compared with the photon hopping energy �.
Thus, we need consider only those excited states with at
most two photons per cavity. Each cavity has the following
Hilbert space
 

Hi � fjgi � fj"i; j#i; j""i; j##i; j"#ig; fjci; jdig � j0i; jci

� j#i; jdi � j"igi: (2)

The eigenstates of Eq. (1) are the dressed states [13],
which we define as j�; �ii for one photon with spin � per
cavity and j�; ��0ii for two photons with spin � and �0

per cavity.
We first consider the one-photon ground state. The

normalized eigenstates are

 j�; �ii � sin�jg;�i � cos�j�; 0i;

j�; �ii � cos�jg; �i � sin�j�; 0i;
(3)

where j�i is the corresponding atom excited state for j�i
state photon. The eigenenergies are Ej�;�ii � !�
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that Ej�;�ii < Ej�;�ii , we only need to consider the negative
branch as the true one-photon ground state [2].

Next, we consider two-photon excited states. The eige-
nenergies have two branches too, and we choose the nega-
tive branch. It is easy to determine the eigenvalue of a
cavity with two photons of the same spin. j�; ��ii �
cos�jg; ��i � sin�j�;�i, and the eigenenergy is
Ej�;��ii � 2!� ��

i =2� �i����, where �i���� ���������������������������������
2�2 � ���
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q
. To solve the excited state j�; "#ii for a

cavity containing two photons with opposite spin state j"i
and j#i, we write the normalized eigenstate as

 j�; "#ii � cos�jg; "#i � sin��cos�ja; "i � sin�jb; #i�;

(4)

where � is the mixing angle, and� is the asymmetry angle,
which can be written as � � 	=4� 
. When the Zeeman
field is turned off, 
 � 0, the two excited states become
degenerate, and they form a superposition state jc; "i �
jd; #i. This is the so-called bright state [14], and it mixes
with the state jg; "#i, giving the Rabi resonance. The two
angles � and 
 are determined by following equations
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Figure 2 shows some of the eigenvalues of one-photon
ground state and two photons excited state for a single
three-level atom in the microcavity i. The eigenenergies
Ej�;1i and Ej�;2i without the Zeeman field, �B � 0, are
shown in Fig. 2(a), which are the same as the results of
Ref. [2]. In Fig. 2(b), we show the eigenenergies of one-
photon ground state and two-photon excited state with
�B � 0:5�. We note that when the Zeeman field is turned
on, Ej�;1i splits to two levels Ej�;�i, and Ej�;2i to three
levels Ej�;��0i.

Now, we construct the effective Hamiltonian by employ-
ing the second-order perturbation theory [9,15] to the
lattice photospin JC system. We assume that each cavity
is loaded with one photon, which can be realized by tuning
the chemical potential � between the two critical values
�c�0� and �c�1� [2]. By choosing V̂ as the zeroth-order
Hamiltonian, the hopping term T̂ changes the initial state
j�ikj�

0il to the double occupied virtual state
j�; ��0ikj�; 0il, or j�; 0ikj�; ��0il, and the correspond-
ing energy changes of these processes are U��0

l!k �

Ej�;��0ik � �Ej�;�ik � Ej�;�0il�, and U��0
k!l � Ej�;��0il �

�Ej�;�ik � Ej�;�0il�. The resulting effective Hamiltonian
becomes a Heisenberg Hamiltonian
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y
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like interaction energies.

In a uniform magnetic field, �Bi � �B, the above
Hamiltonian reduces to the anisotropic Heisenberg model
with J, J0 < 0. The ground state of the system has ferro-
magnetic order, with all the photons right or left circu-
larly polarized. However, it is possible to explore other
phases by varying the effective coupling constants. We
note that if J0 > 0, the ground state of this system is then
the easy-plane ferromagnet, which supports the super-
counter-fluidity. To explore this phase, we begin with a
configuration of an small staggered field, �Bi � ��1�i�B,
small detuning, and strong coupling, i.e., �>�, �B. In
these limits, we arrive at 1
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and the corresponding coupling constants J0 �
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, here D � �2�
���
2
p
����=2. Then the

easy-plane condition J0 > 0 can be realized if the staggered
field �B < D.

The super-counter-fluidity can be understood as follows.
In an easy-plane anisotropic ferromagnetic system, the
photospin raising operator can be written as Ŝ�i � âyi;"âi;#,
and the easy-plane U(1) symmetry could be broken only
spontaneously by forming the superfluid counterflow vac-
uum, i.e. hŜ�i i � hâ

y
i;"âi;#i � 0. This is closely analogous to

exciton condensation [16], where photons and holes with
different polarizations form pairs and condensate. This
means that, while the transport of the net number of
photons is still suppressed in the Mott regime, the currents
of left or right circularly polarized photons are equal in
absolute values and are in opposite directions.

Experimentally, we could construct a geometry to iden-
tify SCF, where two beam of opposite circularly polarized
lasers are positioned in opposite directions for driving
currents in and out of the system. To characterize the
coherent phase formation, we consider the processes of
interactions among photons and their detection. First we
estimate the typical experimental time scales involved. The
photon lifetime is determined by �ph � Q=!, for the tran-
sition wavelength 772 nm 
4� 1014 Hz, note that Q

107 has been achieved [2], �ph 
 25 ns. After one turns on
the staggered field, and the system will be in the SCF
phase, the typical time of this coherent process �co is
determined by virtue process of two photons excitation,
which is 
1=U. For �
 1010 Hz, �co 
 0:1 ns, that is
rather short compared to the photon lifetime. Then one
feeds two directed laser beams to the sample, and Q
switches the cavities [17], one could directly readout the
number of two species of the polarized photons passing
through the slab via a near-field probe with a polarizing
beam splitter (PBS) [7,8]. It should be noted that, all these
laser beams should be stable, with the stability
<min	j���c�0�j

� ; j���c�1�j
� 
 
 10�4. Besides, there is no par-

ticular temperature requirement (see Ref. [2] and referen-
ces therein) in this process. So this setup could serve as a
good candidate for realizing optical switches.

FIG. 2 (color online). Eigenspectrum for a V-type atom in a
cavity as a function of zero field atom-cavity detuning �.
(a) Eigenspectrum of one-photon ground state and two-photon
excited state Ej�;1i and Ej�;2i without the Zeeman field, �B � 0.
(b) The Eigenspectrum splits into two branches for one-photon
ground state, and to three branches for the two-photon excited
state with �B � 0:5�.
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To explore other phases, we further include effective
electric fields, that can be engineered by using ac Stark
shifts [18,19]. This technique was first used by Garcı́a-
Ripoll et al. [19] to implement the quadratic-biquadratic
Hamiltonian for the spin S � 1 cold atoms in 1D optical
lattice. By switching on two kinds of Raman lasers for two
sublattices, one can produce the atom ground state energy
shift 
1 for one sublattice, and 
2 for the other sublattice.
In the absence of a magnetic field, the new eigenvalues of
one-photon ground state and two-photon excited state are
now given by ~Ej�;1ii�

~�� and ~Ej�;2ii�
~�� with ~� � �� 
i,

here 
i is 
1 for one sublattice, and 
2 for the other one.
Following the same procedure, we arrive at J �

4�2�4��
1�
2�

�
1�
2�
2��2��
1�
2�

2 , J0 � 0 for the large detuning limit

j~�ij>�. We note that, if �� 
1, �� 
2 are of opposite
sign, and j�� 
2j> j�� 
1j, then J > 0, signaling an
antiferromagnetic coupling.

Experimentally, the antiferromagnetic ground state
could be realized adiabatically with the help of the duality
between ferro- and antiferromagnetic modelsHAF � �HF
[19]. To do that, one first constructs a configuration of
antiparallel photospins by turning on an effective staggered
magnetic field, then progressively decreases the magnetic
field and increases the electric field gradient, and thus,
arriving at the desired state adiabatically.

As an application, we consider photospin ladder with
exchange energies JL along the legs and JR on rungs. This
model is equivalent to the S � 1=2 Heisenberg ladder that
is one of the simplest but most emblematic quantum-many-
body systems. For all values of JR > 0, the DMRG results
by White [20] showed that the ladder is in the short-range
resonating valence bond phase (dimer RVB) with singlets
on each rung. The diagonally situated next-nearest-
neighbor spins are coupled to form an effective S � 1,
and this phase is identical to the Haldane phase. Thus,
the photospin ladder could offer us a possible way to
generate an array of self-ordered array of singlet state,
which could be used as the emitters of polarization en-
tangled photon pairs.

Until now, all the above analysis was focused on the
schematically depicted photonic crystal slab. A possible
implementation that may be realizable would be an array of
micro-fabricated high-finesse optical cavities, with the
cavities connected by optical fibers [21]. Each cavity is
formed by a concave micromirror and the plane tip of an
optical fiber, with open access and small mode volume, that
could be designed to support only the TEM00 mode. Single
V-shaped atoms could be transported and held in each
cavity by optical confinement and atom waveguide tech-
niques [22–25]. We could choose an argon atom for our
purpose, which has a metastable spinless ground state 1s3

(J � 0), and was successfully confined into a three-
dimensional optical lattice by Müller-Seydlitz et al. [22].
The resonant excited level 2p2 (J � 1) is characterized by

the spontaneous decay rate � � 1:25� 107sec�1, with
wavelength 772 nm [26]. This system seems to approach
the strong coupling regime, with �
 �
 109 Hz, and Q
possibly over 106.

In summary, we have shown how to implement the spin
correlation of polarized photons. Such experiments will
allow us to observe directly the photospin magnetic corre-
lation effects in each microcavity. We predicted that the
system may posses the super-counter-fluidity in the ground
state, and a mean to detect the SCF is present. Finally, we
have investigated the photospin ladder, which may be
beneficial for the realization of future quantum computa-
tion devices.

We thank C. J. Wu and F. Zhou for helpful discussions.
This work was supported by NSFC under Grants
No. 90406017 and No. 60525417, and the NKBRSFC
under Grant No. 2006CB921400. X. C. Xie is supported
by the US-DOE and NSF.

[1] K. M. Birnhaum et al., Nature (London) 436, 87 (2005).
[2] A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L.

Hollenberg, Nature Phys. 2, 856 (2006).
[3] M. J. Hartmann et al., Nature Phys. 2, 849 (2006).
[4] D. G. Angelakis, M. F. Sntos, and S. Bose, Phys. Rev. A

76, 031805 (2007).
[5] M. Onoda, S. Murakami, and N. Nagaosa, Phys. Rev. Lett.

93, 083901 (2004).
[6] F. Jonsson and C. Flytzanis, Phys. Rev. Lett. 97, 193903

(2006).
[7] T. Wilk, S. C. Webster, H. P. Specht, G. Rempe, and

A. Kuhn, Phys. Rev. Lett. 98, 063601 (2007).
[8] R. Garcı́a-Maraver et al., Phys. Rev. A 74, 031801 (2006).
[9] A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett. 90,

100401 (2003).
[10] K. Srinivasan and O. Painter, Opt. Express 11, 579 (2003).
[11] D. N. Jamieson et al., Appl. Phys. Lett. 86, 202101 (2005).
[12] E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89

(1963).
[13] V. Hussin and L. M. Nieto, J. Math. Phys. (N.Y.) 46,

122102 (2005).
[14] E. Arimondo, Prog. Opt. 35, 257 (1996).
[15] L. M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett.

91, 090402 (2003).
[16] J. P. Eisenstein et al., Nature (London) 432, 691 (2004).
[17] A. D. Greentree, J. Salzman, S. Prawer, and L. C. L.

Hollenberg, Phys. Rev. A 73, 013818 (2006).
[18] D. Jaksch and P. Zoller, Ann. Phys. (N.Y.) 315, 52 (2005).
[19] J. J. Garcı́a-Ripoll, M. A. Martin-Delgado, and J. I. Cirac,

Phys. Rev. Lett. 93, 250405 (2004).
[20] S. R. White, Phys. Rev. B 53, 52 (1996).
[21] M. Trupke et al., Appl. Phys. Lett. 87, 211106 (2005).
[22] T. Müller-Seydlitz et al., Phys. Rev. Lett. 78, 1038 (1997).
[23] H. Gauck et al., Phys. Rev. Lett. 81, 5298 (1998).
[24] M. J. Renn et al., Phys. Rev. Lett. 75, 3253 (1995).
[25] H. Ito et al., Phys. Rev. Lett. 76, 4500 (1996).
[26] R. S. F. Chang and D. Setser, J. Chem. Phys. 69, 3885

(1978).

PRL 99, 183602 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
2 NOVEMBER 2007

183602-4


