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We develop a systematic analytical approach to study the linear and nonlinear solitary excitations of quasi-
one-dimensional Bose-Einstein condensates trapped in an optical lattice. For the linear case, the Bloch wave in
the nth energy band is a linear superposition of Mathieu’s functions cen−1 and sen; and the Bloch wave in the
nth band gap is a linear superposition of cen and sen. For the nonlinear case, only solitons inside the band gaps
are likely to be generated and there are two types of solitons—fundamental solitons �which is a localized and
stable state� and subfundamental solitons �which is a localized but unstable state�. In addition, we find that the
pinning position and the amplitude of the fundamental soliton in the lattice can be controlled by adjusting both
the lattice depth and spacing. Our numerical results on fundamental solitons are in quantitative agreement with
those of the experimental observation �B. Eiermann et al., Phys. Rev. Lett. 92, 230401 �2004��. Furthermore,
we predict that a localized gap-soliton train consisting of several fundamental solitons can be realized by
increasing the length of the condensate in currently experimental conditions.
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I. INTRODUCTION

Loading Bose-Einstein condensates �BECs� in an optical
lattice formed by a laser standing wave has received increas-
ing interest in the study of nonlinear atomic optics �1–4�.
Understanding the properties of BEC in an optical lattice is
of fundamental importance for developing applications of
quantum mechanics such as atom lasers and atom interfer-
ometers �5–11�. Theoretically, some approximation methods
are borrowed from solid state physics, which are used to
investigate the dynamics of this system. It is mainly due to
the fact that there are considerable resemblances between
BEC droplet localized in an optical lattice and electron in a
lattice. According to the theory of solid state physics, there
exist band gaps between adjacent energy bands in the band
structure of the solid. In general, the energy bands exhibits
spatially oscillating phenomena. As discussed in Refs.
�12,13�, however, it is possible to generate soliton in the
band gap when the nonlinearity compensates for atom dis-
persion caused by intersite tunneling. The band gap soliton
can be called gap soliton. The existence of the gap solitons
was predicted based on coupled-mode theory �14�, in anal-
ogy to optical gap solitons in Bragg gratings. Such a predic-
tion was validated by a number of groups using some ap-
proximation approaches, such as tight binding approximation
�12�, a complete set of on-site Wannier states �15�, an effec-
tive mass formula �16�, and plane wave method �17�. Al-
though they provide a convenient way to study the gap soli-
ton of the BEC, the validity depends greatly on the nature of
the underlying problem. From this point of view, it is desir-
able to develop a method that does not rely on above ap-
proximations �18�.

Strictly speaking, an accurate solution can be obtained by
exactly solving the full nonlinear Schrödinger equation with
a periodic potential. However, it is very difficult to derive
analytical solutions because the full nonlinear Schrödinger

equation is nonintegrable �19�. Consequently, some
asymptotic approaches and numerical simulations are used to
investigate this question. Using the multiple scale method,
Konotop and Salerno �18� predicted that bright solitons
could come into being in a BEC with a positive scattering
length and dark solitons could be stable with a negative scat-
tering length. Subsequently, these predictions were proved
by using asymptotic theories �20,21�. Employing numerical
simulations, Louis et al. �22� analyzed the existence and sta-
bility of spatially extended �Bloch type� and localized states
of a condensate in the band gaps of the linear Bloch-wave
spectrum.

Especially, Eiermann et al. �23� reported that gap soliton
do neither move nor change their shape and atom numbers
during propagation. That is to say, the gap soliton is pinned
in an optical lattice without attenuation and change in shape.
Such a soliton can be regarded as a spatially localized gap
soliton, which is also called fundamental soliton in Ref. �24�.
More importantly, localized bright solitons would be very
useful for future applications, such as atomic interferometry
�25�. Subsequently, some explanations to this observation
were proposed by using numerical simulations �see Refs.
�26–28� and references therein�.

To better understand the characteristics of the linear and
nonlinear solitary excitations of quasi-one-dimensional �1D�
BECs trapped in an optical lattice, we develop a multiple
scale method to derive analytically an explicit expression of
the wave function. It is found that there are two types of gap
solitons in the band gaps. One is the fundamental soliton,
which is always stable and pins a fixed position; the other is
always unstable and decays gradually due to losing a part of
its atoms. The paper is organized as follows: In Sec. II, we
derive 1D amplitude and phase equations from the original
three-dimensional Gross-Pitaevskii �GP� equation. Subse-
quently, by analyzing the stability regions of soliton forma-
tion, we obtain the formation condition of the fundamental
solitons in the band gaps. A linear dispersion relation arising
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from the ground state and sound speed of this system in the
band gaps are obtained in Sec. III. In Sec. IV, we develop a
multiple scale method to study the nonlinear dynamics of the
system. We derive a solution of the wave function and dis-
cuss its dynamical stability in the band gaps. It is found that
the pinning position and amplitude of the fundamental soli-
tons are controlled by adjusting both lattice depth and spac-
ing. Furthermore, we propose an experimental protocol to
observe a localized gap train consisting of several fundamen-
tal solitons in the condensate under currently experimental
conditions. A brief summary is given in Sec. V.

II. EQUATIONS OF AMPLITUDE AND PHASE

Based on mean-field approximation, the time-dependent
GP equation of full BEC dynamics reads �17,19,22�

i�
��

�T
= �−

�2

2m
�2 + V�X,Y,Z� + g���2�� , �1�

where ��X ,Y ,Z ,T� is the order parameter of condensate,
and �X ,Y� and Z are the directions of strong transverse con-
finement and lattice. N=�dr���2 is the total number of at-
oms, and g=4��2as /m is interatomic interaction strength
with the atomic mass m and the s-wave scattering length as
�as�0 represents the repulsive interaction�. The combined
potential V�X ,Y ,Z� of the optical lattice and magnetic trap is

V�R2,Z� = E0 sin2��Z

d
� +

1

2
m���

2 R2 + �Z
2Z2� ,

�Z � ��, �2�

where R2=X2+Y2, E0 is the lattice depth. d=�L /2 is the
lattice spacing, where �L is the wavelength of laser beams.
�Z and �� are frequencies of the magnetic trap in the axial
�Z� and transverse �X and Y� directions, respectively. By in-
troducing the dimensionless variables t=��T, �r ,z�
=a0

−1�R ,Z� with transverse harmonic oscillator length a0

=	� /m��, and �=	a0
3 /N�, we obtain the following dimen-

sionless GP equation:

i
��

�t
= −

1

2
�2� + 
V0 sin2��z

D
� +

1

2
�r2 + 	2z2��� + Q���2� ,

�3�

where V0=E0 / �����, D=a0
−1d, 	=�z /���1, and Q

=4�as /a0. Expressing the order parameter in terms of modu-
lus and phase, i.e., �=	n exp�i
�, and then separating real
and imaginary parts, we obtain

�n

�t
+ � · �n � 
� = 0, �4�

�


�t
+ V0 sin2��z

D
� +

1

2
�r2 + 	2z2�

+
1

2
��
�2 −

1

2	n
�2	n + Qn = 0. �5�

Equations �4� and �5� are �3+1�-dimensional, nonlinear,
and dispersive equations with a variable coefficient. To solve

these equations, we introduce some reasonable approxima-
tions. Considering a 87Rb condensate in a cigar-shaped trap
with the frequencies of �z=2��0.5 Hz and ��=2�
�85 Hz �23�, we obtain 	�0.006. The value of 	 is so
small that the variation of the profile of the order parameter
is slow in the z direction. Thus, the wave function can be
separated by ��r ,z , t�=G0�r���z , t� with ��z , t�
=A�z , t�exp�−i
t+ i��z , t��. Here, the modulus and the phase
are 	n=G0�r�A�z , t� and 
=−
t+��z , t�, respectively. Ow-
ing to the strong confinement in the transverse direction, the
spatial structure of function G0�r� can be well described by a
solution of two-dimensional radial symmetric quantum
harmonic-oscillator equation, i.e., ��

2 G0+2G0−r2G0=0. The
ground-state solution has the form G0�r�=C exp�−r2 /2�,
where C=1 /	� can be found from the normalization condi-
tion �−�

� �G0�2rdr=1. Substituting them into Eqs. �4� and �5�,
we obtain

�A

�t
+

�A

�z

��

�z
+

1

2
A

�2�

�z2 = 0, �6�

−
1

2

�2A

�z2 + 
1

2
� ��

�z
�2

− 
 + 1 +
��

�t

+ V0 sin2��z

D
��A + Q�A3 = 0, �7�

with Q�=Q / �2��=2as /a0. In order to obtain 1D amplitude
and phase equations, we have multiplied Eq. �7� by G

0
* and

then integrated the resulting equation once with respect to
the transverse coordinate to eliminate the dependence on
transverse plane. An approach similar to this one has been
widely used in quasi-1D �cigar-shaped� BEC problems
�22,29,30�.

III. LINEAR BLOCH MODES

We now consider a BEC trapped in a 1D optical lattice.
Due to the strong confinement in the transverse direction, the
system is similar to a waveguide, in which the excitation
propagates in the elongated direction �31�. The strong con-
finement also ensures the dynamical stability of the linear
excitation �31�. Therefore, we set A=u0�z�+��z , t� with
��z , t�=�0 exp�i�1�+c.c. and �=�0 exp�i�1�+c.c. Here, c.c.
is complex conjugate and �1=kz−�t. k is the wave number
and � is the eigenfrequency. Without loss of generality, we
assume u0�z� characterizing the condensate background.
Considering that �0 and �0 are small constants, we obtain

i��0 = ik�0
�u0

�z
−

1

2
k2u0�0, �8�

�
 − 1�u0 = −
1

2

�2u0

�z2 + V0 sin2��z

D
�u0 + Q�u0

3, �9�
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�
 − 1��0 =
1

2
k2�0 − i��0u0 + V0 sin2��z

D
��0 + 3Q�u0

2�0

�10�

from the linearization of Eqs. �6� and �7�. Under the linear
case, Q��0. Equation �9� is turned into Mathieu’s equation
�32,33�

d2u0

d�2 + �p + 2q cos�2���u0 = 0, �11�

with �=�z /D, q=−V0D2 / �2�2�, and p=q+2D2�
−1� /�2.
Based on the Floquet-Bloch theorem, u0 can be represented a
superposition of Bloch waves, i.e., u0���
=b1 exp�i���u01���+b2 exp�−i���u02���, where u01��� and
u02��� are Mathieu’s functions �cen or sen�, b1 and b2 are
arbitrary constants, and � is a Floquet exponent. If cos����
= �1, the solutions of Mathieu’s equation are periodic func-
tions and can be expanded as Fourier series �detailed expres-
sion in Ref. �33��.

It should be mentioned that in recent experiments the
characteristic lattice spacing d is determined by the angle
between the intersecting laser beams forming the lattice and
varies in the range 0.4−1.6 
m �34�. The lattice depth E0
scales linearly with the light intensity, and varies between 0
and E0

max�20Erec, where Erec=�2�2 / �2md2� is the lattice re-
coil energy �34�. So, the dimensionless parameters V0 and D
are in the range of 0�V0�7.0�102 and 0.3�D�4.05. For
convenience, here we set D=3.14 in our calculation.

From the eigenvalues p and q of Mathieu’s function �the
textbook analysis can be found, e.g., in Ref. �32��, Fig. 1
presents the band gap diagram for the extended solutions of
Eq. �11� which describe noninteracting condensed atoms in
an optical lattice. The results are presented for the parameter
domain �V0 ,
� relevant to our problem. One can find that the

energy bands �shaded areas� are separated by the band gap
regions. In these band gaps, unbounded solutions exist. The
band edges correspond to exactly periodic solutions. The re-
gions 1 and 2 represent the first and second energy band,
respectively, while the regions I and II denote the first and
second band gap, respectively. From Fig. 1, we can conclude
that the Bloch wave u0 in the nth energy band is the linear
superposition of the Mathieu’s functions cen−1 and sen, and
u0 in the nth band gap is the linear superposition of cen and
sen. As is shown below, a complete band gap spectrum of the
matter waves in an optical lattice provides important clues on
the existence and the stability regions of solitons.

We next consider the case of Q��0, and discuss the sta-
bility problem of soliton formation. Utilizing Eqs. �8�–�10�,
we obtain

�2 = � 1

2u0

�2u0

�z2 +
1

2
k2 + 2Q�u0

2�� ik

u0

�u0

�z
+

1

2
k2� . �12�

Setting �=�r+ i�i �where the subscripts denote the real and
imaginary parts� �35�, one obtains

�r
2 = ��/4�	k4 + �4k2/u0

2�� �u0

�z �2
+ �k2�/4�

and

�i
2 = ��/4�	k4 + �4k2/u0

2�� �u0

�z �2
− �k2�/4� ,

where

� = �1/�2u0��
�2u0

�z2 + k2/2 + 2Q�u0
2

If the imaginary part of quasiparticle frequency is a nonzero
value, the corresponding Bloch wave exhibits exponential
growth and hence the state � is dynamical instability �22�. If
the frequency of the associated quasiparticle spectrum is real,
the soliton would be stable. From the expression of the
imaginary part of the frequency, one can see the dependence
of the instability growth rate �i on k and 1

u0

�u0

�z . On the one
hand, when k=0, one finds �=0, which is an inessential
solution. On the other hand, it is impossible for 1

u0

�u0

�z being
equal to zero because u0 is the Bloch wave in the energy
bands or band gaps. If 1

u0

�u0

�z is a purely imaginary number
�also obtained from Eq. �12��, the wave function � possesses
dynamical stability. We therefore conclude that the stable
condition of soliton formation is u0=exp�i�z�, where � is an
arbitrary real constant. Because the Bloch wave in the nth
energy band is the linear superposition of the Mathieu’s
functions cen−1 and sen, it does not satisfy the stable condi-
tion. Only if Bloch wave in the nth band gap has the form of
u0=� cen+�i sen, the soliton possesses dynamical stability.
Thus the linear dispersion relation of the nth band gap is

�2 = � k2

2
−

kn�

D
�� k2

2
−

n2�2

2D2 + 2Q�u0
2� . �13�

Under long-wave approximation, the sound speed is

FIG. 1. �Color online�. Bloch band of BEC in an optical lattice
in the linear regime is functions of the optical depth V0 and the
chemical potential 
. The shaded areas denote the energy bands.
The regions 1 and 2 represent the first and second energy band,
respectively. The areas I and II represent the lowest two band gaps
in the spectrum. Band edges �solid line� a ,b ,c ,d ,e , f , . . . corre-
spond to the eigenvalues and eigenstates P0

c�ce0�, P1
s�se1�, P1

c�ce1�,
P2

s�se2�, P2
c�ce2�, P3

s�se3� , . . . of Mathieu’s equation, respectively.
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Vg = lim
k→0

��

�k
= �	Q�u0

2 −
n2

4
��

D
�2

, �14�

where the positive �negative� sign represents the rightward
�leftward� propagation of the wave packets. For the case of
D→�, the external potential would be a harmonic potential
�see Eq. �2�� and a corresponding sound speed is Vgh

=	Q�u0 in our notation. This behavior is consistent with both
the experimental �36� and theoretical results �30�. Obviously,
the second term under the radical sign in Eq. �14� is arisen
from the optical lattice potential. The sound speed is the
largest in the first band gap and gradually decreases with n.
Generally speaking, the value of 1 /D in the experiments
�23,34� would be larger than that of Q�. It implies that the
linear dispersion relation and sound speed are dependent
mainly on the lattice spacing.

IV. NONLINEAR BLOCH MODES

A. The explicit expression of the wave function

To better understand the nonlinear dynamics of BEC in an
optical lattice, we here develop a multiple scale method to
derive an explicit expression of the wave function of the
condensates in an optical lattice. By means of asymptotic
expansion in nonlinear perturbation theory, we propose that
the amplitude and phase can be expanded by multiple scale
methods. In the case of that, mathematically, any parameter
can be defined as a function of fast and slow variables, we
propose each order parameter of the amplitude and phase can
be written to a function of a fast and two slow variables. That
is to say, the amplitude and phase of the wave function are
sought for the forms of A=u0�z0 ,� ,��+��a�0��z0 ,� ,��
+�2a�1��z0 ,� ,��+ ¯ � and �=�2���0��z0 ,� ,��
+�2��1��z0 ,� ,��+ ¯ �, respectively, where the small param-
eter � represents the relative amplitude of extended states in
BEC. Slow variables �=��z−Vgt� and �=�3t characterize the
slow variation of soliton dynamics. Fast variable z0=z de-
notes the propagation direction of the lattice wave packets.
Vg is a group velocity. By substituting them into Eqs. �6� and
�7�, and then separating them in terms of �, Eq. �6� can be
written as

Vg
�u0

��
= 0, �15�

Vg
�a�0�

��
=

�u0

�z0

���0�

�z0
+

1

2
u0

�2��0�

�z0
2 , �16�

�u0

�z0

���0�

��
+

�u0

��

���0�

�z0
+

�a�0�

�z0

���0�

�z0
= −

�u0

��
, �17�

Vg
�a�1�

��
=

�a�0�

��
+

�a�0�

��

���0�

�z0
+

1

2
u0

�2��0�

��2 +
1

2
u0

�2��1�

�z0
2

+ a�0��
2��0�

�z0��
+

�u0

�z0

���1�

�z0
+

�u0

��

���0�

��
+

�a�0�

�z0

���0�

��
.

�18�

Equation �7� becomes

−
1

2

�2u0

�z0
2 − �
 − 1�u0 + V0 sin2��z0

D
�u0 + Q�u0

3 = 0,

�19�

−
1

2

�2a�0�

�z0
2 − �
 − 1�a�0� + V0 sin2��z0

D
�a�0� + 3Q�u0

2a�0�

=
�2u0

�z0��
, �20�

−
�2a�0�

�z0��
+ 3Q�u0�a�0��2 =

1

2

�2u0

��2 , �21�

−
1

2

�2a�1�

�z0
2 − �
 − 1�a�1� + V0 sin2��z0

D
�a�1� + 3Q�u0

2a�1�

=
1

2

�2a�0�

��2 , �22�

�2a�1�

�z0��
− 6Q�u0a�0�a�1� =

1

2
u0� ���0�

�z0
�2

− Vga�0����0�

��
.

�23�

From Eq. �15�, one can see that u0 is independent on �.
Due to the fast and slow varies possess different physical
connotation, so it is reasonable that these order parameters
are written to arithmetic multiply of function of the fast and
slow variables. We may set u0�z0 ,��=u01�z0�u03���. Simi-
larly, a�i� and ��i� are the forms of a�i��z0 ,� ,��
=ai1�z0�ai2���ai3��� and ��i��z0 ,� ,��=�i1�z0��i2����i3���, re-
spectively, where i=0,1 ,2 , . . .. Note that the form of Eq.
�19� is the same as that of Eq. �9�. In view of the fact that
BEC in the experiments are dilute and weakly interacting:
n�as�3�1, where n is the average density of the condensate,
so Eq. �19� can also be transformed into Mathieu’s equation
under the consideration of weak nonlinearity. The solutions
of Mathieu’s equation have been discussed in Sec. III. By
comparing Eq. �19� with Eq. �20�, one finds a�0�=0. From
Eq. �16�, we obtain u0= � ���0�

�z0
�−�1/2�. So, Eq. �17� becomes

−

��03

��

�03
2 =

�2�01

�z0
2 �01

��02

��

��01

�z0

. �24�

The left-hand side of Eq. �24� is the differentiation of �03
with respect to �, while the right-hand side of Eq. �24� is
differentiation of �01 ��02� with respect to z0 ���. Obviously,
both sides of the equation must be equal to a constant �, i.e.,
�03=1 / ����, and �02=−�1 /2��u01��

�u01

�z0
�

dz0

�u01�z0��2 �−1. So, ��0�

=−�u01� / �2����
�u01

�z0
�−1. Correspondingly, we obtain

�u03���
��

=
u03���

2�
. �25�

Similarly, from Eqs. �18�, �22�, and �23�, we have
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a�1� =
u0�3

24�2
 �2u0

�z0
2 + 4Q�u0

3�
�

�z0

u0
1 − u0

�2u0

�z0
2 � �u0

�z0
�−2�2� .

�26�

Under the transformations z0=z, �=��z−Vgt�, and �=�3t, the
perturbation parameters can be written as u0�z , t�=u01�z�	t,
�2��0�=−��z−Vgt�u0 / �2t���

�u0

�z �−1, and �3a�1�= �u0�z
−Vgt�3 / �24t2�

�2u0

�z2 +4Q�u0
3��� �

�z �u0�1−u0
�2u0

�z2 �
�u0

�z �−2�2�, where
u01�z� is the nonlinear Bloch wave of BEC in an optical
lattice. Finally, the solution of the dimensionless GP equation
�3� is given by

��r,z,t� =	 1

�
exp�−

r2

2
��u01 +

u01�z − Vgt�3

24t2
 �2u01

�z2 + 4tQ�u01
3 �

�
�

�z

u01
1 − u01

�2u01

�z2 � �u01

�z
�−2�2��

�exp
− i
t − i
�z − Vgt�u01

2t
� �u01

�z
�−1� , �27�

where the Bloch waves u01 and group velocity Vg can be
given in Sec. III. 
 is the chemical potential. Equation �27� is
just an explicit expression of the wave function for 1D BEC
trapped in an optical lattice.

As is discussed in Sec. III, the Bloch wave in the nth
energy band is the linear superposition of the Mathieu’s
functions cen−1 and sen, which does not satisfy the stable
condition of soliton formation. Therefore, the condensate in
the energy band region cannot generate soliton, only the con-
densates in the band gaps may occur in the soliton. In the
following we discuss soliton dynamical stabilities of the con-
densates in the band gaps. The stability of soliton in nonlin-
ear systems is an important issue, since only dynamically
stable modes are likely to be generated and observed in ex-
periments.

B. Soliton properties in the band gaps

To link our analytical results to real experiments, we es-
timate the values of the dimensionless parameters in Eq. �27�
according to actual physical quantities. We consider a cigar-
shaped 87Rb condensate �atomic mass 1.4�10−25 kg and the
scattering length 5.3 nm� containing N=900 atoms in a trap
with �z=2��0.5 Hz and ��=2��85 Hz �The data are
from the experiment �23��. The parameter 	�0.006�1 in
Eq. �3�. It implies that the condensate may be regarded as a
quasi-1D optical lattice in the direction of a weak confine-
ment. Hereafter the radial radius is determined by r=0.01.
Based on that 1D optical lattice is created from one pair of
counterpropagating laser beams in real experiments, the lat-
tice depth and the lattice spacing depend on the peak inten-
sity and the angle of the two identical counterpropagating
laser beams, respectively. For the wavelength �L=783 nm,
used in Ref. �23�, this angle between counterpropagating la-
ser beams would be equal to 2.3°. The periodic potential is

V=E0 sin2��Z /d� where E0=0.70 Erec and d=�L /2 are the
lattice depth and periodicity, respectively. Accordingly, the
time and space units correspond to 0.2 ms and 3 
m, respec-
tively. These units remain valid for other values of N, as one
may vary V0 accordingly; in this case, other quantities, such
as D, also change. Based on these proposed, we obtain the
dimensionless parameters D�0.33, Q��9�10−3, and V0
�7.9.

As is discussed above, the nonlinear Bloch waves in the
nth band gap can be given by the linear superposition of cen
and sen under the case of weak nonlinearity. On the basis of
the fact that the coefficients of periodic Mathieu’s functions
depend on eigenvalue q �33� �i.e., V0 in our notation�, we
presuppose that the Mathieu’s functions are ce1
=�k=0

1000V0 cos�k�� and se1=�k=0
1000V0 sin�k�� in the following

calculation.
First, we choose a linear superposition form of u01�z�

=ce1+se1 as the nonlinear Bloch wave in the first band gap.
The time evolution of the density distribution of the conden-
sates in this case is plotted in Fig. 2. We see that the peak of
wave packets decreases exponentially with time and eventu-
ally vanishes. Thus the state is always unstable and is called
the subfundamental soliton in Ref. �24�. Such a soliton with
a very small initial total number of atoms loses a part of the
atoms with as time goes on, so it is unstable �refer to Ref.
�24��.

Secondly, we choose u01�z�=ce1+ i se1, which satisfies the
stable condition of soliton formation, as the nonlinear Bloch
wave in the first band gap. Figure 3 shows the space-time
evolution of the density the condensates in first band gap. A
strong peak appears in the condensate with a dimensionless
lengths of 12.6 �about 38 lattice sites�, and maintains its
shape and magnitude. It implies the existence of a bright gap
soliton. As time goes on, the bright gap soliton is pinned in
the optical lattice without both attenuation and change in
shape. This behavior indicates that it is a spatially localized
bright gap soliton, which is arisen from the interplay be-
tween the tunneling of periodical potential and nonlinear in-
teraction of the system. Moreover, the width of the peak in

FIG. 2. �Color online�. The space-time evolution of the density
of the condensates in the first band gap. The Bloch wave is chosen
as u01�z�=ce1+se1. The parameters used are the lattice depth V0

=7.9, interatomic interaction strength Q�=9�10−3, the lattice spac-
ing D=0.33, the radial radius r=0.01, and the chemical potential

=1.12. All parameters are in dimensionless units.
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the z− t plane is found to be a dimensionless length with 2.0,
i.e., �6 
m in real space. The value is in good agreement
with that of the experiment observed by Eiermann et al. �23�.
The agreement illustrates that our method can describe the
dynamics of BEC trapped in an optical lattice very well. The
type of bright gap solitons are called fundamental solitons in
Ref. �24�. Similar phenomena can also be obtained inside the
other band gap.

From the results discussed above, the solitons residing in
the band gaps are the fundamental or subfundamental soli-
tons depending on their position in the band gap whether the
stable condition of soliton formation can be satisfied or not.

In real experiment, the 1D optical lattice is created from
one pair of counterpropagating laser beams, and the lattice
depth depends on the peak intensity of the two identical
counterpropagating laser beams. That is to say, the lattice
depth can be adjusted by varying the intensity of the coun-
terpropagating laser beams. We here depict how the lattice
depth influences the fundamental soliton in Fig. 4 �with all
the rest of the system parameters fixed�. From solid line
�V0=7.9� and dashed line �V0=10�, one sees the amplitude of
the fundamental soliton increasing with the increasing of the
lattice depth. Due to both wave packets containing the same
total number of atoms but the bosons in deeper well are
captured more tightly, the tunneling probability varies
smaller �19,37�. To balance the same nonlinear effect of the
system, the tunneling rate of bosons in deeper well becomes
much larger to achieve the same dispersion effect, which
results in the amplitude of the fundamental soliton increas-
ing. Therefore, the amplitude of the localized gap soliton
increases with the increasing the intensity of the counter-
propagating lasers beams in the experiments.

Subsequently, we observe the soliton characteristics in a
longer condensate. Our numerical calculations are performed
for the condensate cloud in the ground state extending over
35 dimensionless lengths �about 106 lattice sites�, which cor-
responds to 105 
m in real space. The condensate cloud
contains about 2.5�103 atoms under the consideration that
the atomic density keeps unchanged. Figure 5 shows the
space-time evolution of the density of the condensates in this

case. It is shown that there exhibits a localized gap soliton
train consisting of several fundamental solitons in the con-
densate. Similarly to the property of a single fundamental
soliton, the solitonlike wave packets in the train are immo-
bile �i.e., have zero group velocity�. In reality, the condensate
is loaded into an optical lattice from a crossed optical dipole
trap �23�, which results in an initial state of a finite extent. A
BEC wave packet centered around a particular quasimomen-
tum in a given band is created by ramping up of a static
lattice with subsequent linear acceleration to a given velocity
�23�. In order to observe a localized gap soliton train, we
may propose experimental protocols according to the experi-
mental observation of a single fundamental soliton �23�.
First, the atoms are initially precooled in a magnetic time-
orbiting potential trap using the standard technique of forced
evaporation leading to a phase space density of �0.03. Sub-
sequently, the atomic ensemble is adiabatically transferred
into a crossed light beam dipole trap, where further forced
evaporation is achieved by lowering the light intensity in the
trapping light beams. With this approach, one can generate

FIG. 3. �Color online� The space-time evolution of the density
of the condensate with 12.6 dimensionless lengths �about 38 lattice
sites�, which corresponds to about 38 
m in real space. The Bloch
wave is chosen as u01�z�=ce1+ i se1. Other parameters used are the
same as in Fig. 2

FIG. 4. �Color online� The distribution of the density of the
condensates with different lattice depth at t=1, where the dimen-
sional parameter V0=7.9 corresponds to the lattice depth in the
experiment �23�. Other parameters used are the same as in Fig. 2.

FIG. 5. �Color online� The space-time evolution of the density
of the condensate with 35 dimensionless lengths �about 106 lattice
sites�, which corresponds to about 105 
m in real space. Other
parameters used are the same as Fig. 2.
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pure condensates with typically 9�104 atoms. By further
lowering the light intensity, one can reliably produce coher-
ent wave packets of 9000 atoms. For this atom number no
gap solitons have been observed. Therefore, one removes
atoms by Bragg scattering. This method splits the condensate
coherently leaving an initial wave packet with 2.5�103 at-
oms at rest. Then, the wave packet centered on a particular
position in a given band gap �which satisfies the stable con-
dition of soliton formation� is created by switching off one
dipole trap beam from a crossed optical dipole trap, releasing
the atomic ensemble into 1D horizontal waveguide with
transverse and longitudinal trapping frequencies ��=2�
�85 Hz, and �� =2��0.5 Hz, and then accelerating the pe-
riodic potential to the recoil velocity vr=h /m�. This is done
by introducing an increasing frequency difference between
the two laser beams, creating the optical lattice. The accel-
eration is adiabatic, which results in an initial state of an
about 105 
m extent. In view of the fact that the tunneling
rate of about 900 atoms extending the length of 38 
m �in
our above simulation� can balance its nonlinear energy, such
a system generates a fundamental soliton. With both the
length of condensate and the total number of atoms increase,
the wave packet exhibits violent dynamics. During this evo-
lution the wave packet containing 2.5�103 atoms is sepa-
rated from the surrounding atomic cloud into several BEC
wave packets, so the periodic structure of a train of the lo-
calized wave packets emerges. Such a structure represents a
train consisting of several fundamental solitons, which is
supported by the combined action of the repulsive nonlinear-
ity and anomalous diffraction caused by intersite tunneling in
the band gaps �16,18,38�.

Finally, we study how the lattice spacing influences the
fundamental soliton or soliton trains as shown in Fig. 6. In
practice the variation of lattice spacing is easy to control by
adjusting the angle between two counterpropagating laser
beams. From solid line �D=0.33� and dashed line �D
=0.99�, we find that when there exists a slight difference of
lattice spacing, the pinning position and the amplitude of

each fundamental soliton have little change in keeping the
distance between adjacent solitons unvaried. It illuminates
that the condensate cloud is separated into three wave pack-
ets for both D=0.33 and D=0.99. When the lattice spacing D
varies from 0.33 to 0.99, the condensate from 91 decreases to
30 wells. Owing to the center position of each wave packet
floating, the pinning position of the fundamental soliton are
set to move. And each BEC the wave packet still forms a
localized gap soliton, which comes from the balance between
the nonlinearity and atom dispersion caused by intersite tun-
neling. However, when the lattice spacing D varies from 0.33
to 0.99, the number of atoms in a well increases from 28 to
83. For the same length condensate, the tunneling between
adjacent well varies easier with the increasing of the atomic
number confined in a well. To balance the same nonlinear
energy of the system, bosons gathering around several wells
vary easier, which results in the amplitude of each localized
soliton having an increasing trend. When lattice spacing var-
ies much larger �see dotted line D=16.5 in Fig. 6�, one find
that there appears only a fundamental soliton in the entire
condensate with about 30 dimensionless lengths. The main
reason is that the condensate in this case only contains about
two wells. The tunneling of bosons in adjacent lattice
achieves the dispersion effect to balance the nonlinear energy
of the system, so there exhibits only a fundamental soliton in
this case.

From the results discussed above, we can conclude that
the condensate generating a single fundamental soliton or a
localized gap soliton train consisting of several fundamental
solitons can be controlled by adjusting the length of conden-
sate or �and� the lattice spacing. Our theoretical results re-
ported here is important in understanding the fundamental
soliton physics of BEC in the future.

V. CONCLUSION

In summary, we develop the multiple scale method to
study the linear and nonlinear solitary excitations for 1D
BEC confined in an optical lattice. After averaging over the
transverse variable, a hydrodynamical model of the ampli-
tude and phase is derived. In the linear case, the Bloch wave
in the nth energy band is the linear superposition of the
Mathieu’s functions cen−1 and sen, and the Bloch wave in the
nth band gap is the linear superposition of cen and sen. In
addition, we find that the stable condition of soliton forma-
tion is that the Bloch wave u0 in nth band gap satisfies u0
=� cen+ i� sen. Under this stable condition, a linear disper-
sion relation and sound speed are derived. It is found that the
linear dispersion relation and sound speed depend mainly on
the lattice spacing.

For the nonlinear case, we derive a solution of the wave
function of the condensates with weakly interatomic interac-
tion, and discuss its stability for condensate 87Rb in band
gaps. It shows that there are two types of gap solitons in the
band gaps. One is the fundamental soliton, which is always
stable and pins a fixed position; the other is the subfunda-
mental soliton which is always unstable and decays gradu-
ally due to losing a part of its atoms. Only when the Bloch

FIG. 6. �Color online� The distribution of the density of the
condensates with different lattice spacing D at t=1, where the di-
mensional parameter D=0.33 corresponds to the lattice spacing in
the experiment �23�. Other parameters used are the same as Fig. 2.
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wave in the band gaps satisfies the stable condition, the con-
densates exhibit the fundamental solitons, otherwise there
appears the subfundamental solitons. Furthermore, the pin-
ning position and the amplitude of the fundamental solitons
in the lattice can be controlled by varying the lattice depth
and spacing. We also propose an experimental protocol to
observe a localized gap soliton train consisting of several
fundamental solitons for BEC trapped in an optical lattice in
future experiment.

ACKNOWLEDGMENTS

This work is supported by NSF of China under Grants
No. 90406017, No. 60525417, No. 10740420252, No.
10674070, and No. 10674113, the NKBRSF of China under
Grants No. 2005CB724508 and No. 2006CB921400, Jiangsu
Provincial Postdoctoral Science Foundation under Grant No.
0601043B, and Hunan provincial NSF of China under Grant
No. 06JJ50006.

�1� M. Barrett, J. Sauer, and M. S. Chapman, Phys. Rev. Lett. 87,
010404 �2001�.

�2� C. Orzel, A. K. Tuchman, M. L. Fensclau, M. Yasuda, and M.
A. Kasevich, Science 291, 2386 �2001�.

�3� F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi,
A. Trombettoni, A. Smerzi, and M. Inguscio, Science 293, 843
�2001�.

�4� M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I.
Bloch, Nature �London� 415, 39 �2002�.

�5� A. S. Desyatnikov, E. A. Ostrovskaya, Y. S. Kivshar, and C.
Denz, Phys. Rev. Lett. 91, 153902 �2003�; G. P. Berman, F.
Borgonovi, F. M. Izrailev, and A. Smerzi, ibid. 92, 030404
�2004�; J. Yang, I. Makasyuk, P. G. Kevrekidis, H. Martin, B.
A. Malomed, D. J. Frantzeskakis, and Z. G. Chen, ibid. 94,
113902 �2005�.

�6� B. B. Baizakov, B. A. Malomed, and M. Salerno, Phys. Rev. E
74, 066615 �2006�; H. Sakaguchi and B. A. Malomed, ibid.
72, 046610 �2005�; B. Baizakov, G. Filatrella, B. Malomed,
and M. Salerno, ibid. 71, 036619 �2005�.

�7� K. Staliunas, R. Herrero, and G. J. de Valcarcel, Phys. Rev. E
73, 065603�R� �2006�; G. X. Huang, L. Deng, and C. Hang,
ibid. 72, 036621 �2005�; D. E. Pelinovsky, D. J. Frantzeskakis,
and P. G. Kevrekidis, ibid. 72, 016615 �2005�.

�8� E. Kengne and W. M. Liu, Phys. Rev. E 73, 026603 �2006�; L.
Li, B. A. Malomed, D. Mihalache, and W. M. Liu, ibid. 73,
066610 �2006�; V. A. Brazhnyi and V. V. Konotop, ibid. 72,
026616 �2005�.

�9� G. Theocharis, D. J. Frantzeskakis, R. Carretero-Gonzalez, P.
G. Kevrekidis, and B. A. Malomed, Phys. Rev. E 71, 017602
�2005�; D. E. Pelinovsky, A. A. Sukhorukov, and Y. S.
Kivshar, ibid. 70, 036618 �2004�; B. A. Malomed, T. Mayte-
evarunyoo, E. A. Ostrovskaya, and Y. S. Kivshar, ibid. 71,
056616 �2005�.

�10� E. P. Fitrakis, P. G. Kevrekidis, H. Susanto, and D. J. Frantz-
eskakis, Phys. Rev. E 75, 066608 �2007�; D. L. Machacek, E.
A. Foreman, Q. E. Hoq, P. G. Kevrekidis, A. Saxena, D. J.
Frantzeskakis, and A. R. Bishop, ibid. 74, 036602 �2006�.

�11� Z. X. Liang, Z. D. Zhang, and W. M. Liu, Phys. Rev. Lett. 94,
050402 �2005�; A. C. Ji, X. C. Xie, and W. M. Liu, ibid. 99,
183602 �2007�.

�12� A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86, 2353
�2001�; A. Smerzi and A. Trombettoni, Phys. Rev. A 68,
023613 �2003�.

�13� F. K. Abdullaev, B. B. Baizakov, S. A. Darmanyan, V. V.
Konotop, and M. Salerno, Phys. Rev. A 64, 043606 �2001�.

�14� O. Zobay, S. Pötting, P. Meystre, and E. M. Wright, Phys. Rev.

A 59, 643 �1999�.
�15� G. L. Alfimov, P. G. Kevrekidis, V. V. Konotop, and M. Sal-

erno, Phys. Rev. E 66, 046608 �2002�.
�16� H. Pu, L. O. Baksmaty, W. Zhang, N. P. Bigelow, and P. Mey-

stre, Phys. Rev. A 67, 043605 �2003�.
�17� N. K. Efremidis and D. N. Christodoulides, Phys. Rev. A 67,

063608 �2003�.
�18� V. V. Konotop and M. Salerno, Phys. Rev. A 65, 021602�R�

�2002�.
�19� O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179

�2006�.
�20� K. M. Hilligsoe, M. K. Oberthaler, and K. P. Marzlin, Phys.

Rev. A 66, 063605 �2002�; V. Ahufinger, A. Sanpera, P. Pedri,
L. Santos, and M. Lewenstein, ibid. 69, 053604 �2004�.

�21� S. Pötting, M. Cramer, and P. Meystre, Phys. Rev. A 64,
063613 �2001�; H. A. Cruz, V. A. Brazhnyi, V. V. Konotop, G.
L. Alfimov, and M. Salerno, ibid. 76, 013603 �2007�.

�22� P. J. Y. Louis, E. A. Ostrovskaya, C. M. Savage, and Y. S.
Kivshar, Phys. Rev. A 67, 013602 �2003�.

�23� B. Eiermann, T. Anker, M. Albiez, M. Taglieber, P. Treutlein,
K. P. Marzlin, and M. K. Oberthaler, Phys. Rev. Lett. 92,
230401 �2004�.

�24� T. Mayteevarunyoo and B. A. Malomed, Phys. Rev. A 74,
033616 �2006�.

�25� E. A. Ostrovskaya and Y. S. Kivshar, Phys. Rev. Lett. 90,
160407 �2003�.

�26� M. Matuszewski, W. Krolikowski, M. Trippenbach, and Y. S.
Kivshar, Phys. Rev. A 73, 063621 �2006�.

�27� P. G. Kevrekidis, D. J. Frantzeskakis, R. Carretero-Gonzalez,
B. A. Malomed, G. Herring, and A. R. Bishop, Phys. Rev. A
71, 023614 �2005�.

�28� C. Menotti, M. Kraemer, A. Smerzi, L. Pitaevskii, and S.
Stringari, Phys. Rev. A 70, 023609 �2004�.

�29� T. Busch and J. R. Anglin, Phys. Rev. Lett. 84, 2298 �2000�.
�30� G. X. Huang, M. G. Velarde, and V. A. Makarov, Phys. Rev. A

64, 013617 �2001�; G. X. Huang, J. Szeftel, and S. H. Zhu,
ibid. 65, 053605 �2002�.

�31� A. E. Muryshev, H. B. vanLindenvandenHeuvell, and G. V.
Shlayapnikov, Phys. Rev. A 60, R2665 �1999�.

�32� D. W. Jordan and P. Smith, Nonlinear Ordinary Differential
Equations �Clarendon Press, Oxford, 1977�.

�33� I. S. Gradshteyn and I. M. Rhyzhik, Table of Integrals, Series,
and Products, 4th ed. �Academic, New York, 1980�, p. 991,
Sec. 8.60.

�34� M. Cristiani, O. Morsch, J. H. Muller, D. Ciampini, and E.
Arimondo, Phys. Rev. A 65, 063612 �2002�; O. Morsch, M.

WANG, YAN, AND LIU PHYSICAL REVIEW E 78, 026606 �2008�

026606-8



Cristiani, J. H. Muller, D. Ciampini, and E. Arimondo, ibid.
66, 021601�R� �2002�.

�35� P. G. Kevrekidis, R. Carretero-Gonzalez, G. Theocharis, D. J.
Frantzeskakis, and B. A. Malomed, Phys. Rev. A 68, 035602
�2003�.

�36� M. R. Andrews, D. M. Kurn, H. J. Miesner, D. S. Durfee, C.
G. Townsend, S. Inouye, and W. Ketterle, Phys. Rev. Lett. 79,

553 �1997�; 80, 2967 �1998�.
�37� Q. Niu, X. G. Zhao, G. A. Georgakis, and M. G. Raizen, Phys.

Rev. Lett. 76, 4504 �1996�; W. M. Liu, W. B. Fan, W. M.
Zheng, J. Q. Liang, and S. T. Chui, ibid. 88, 170408 �2002�.

�38� B. J. Dabrowska, E. A. Ostrovskaya, and Y. S. Kivshar, Phys.
Rev. A 73, 033603 �2006�.

LOCALIZED GAP-SOLITON TRAINS OF BOSE-EINSTEIN… PHYSICAL REVIEW E 78, 026606 �2008�

026606-9


