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By means of the Darboux transformation, we obtain analytical solutions for a soliton set on top of a
plane-wave background in coupled Gross-Pitaevskii equations describing a binary Bose-Einstein condensate.
We consider basic properties of the solutions with and without the cross interaction �cross phase modulation
�XPM�� between the two components of the background. In the absence of the XPM, this solutions maintain
properties of one-component condensates, such as the modulation instability �MI�; in the presence of the cross
interaction, the solutions exhibit different properties, such as restriction of the MI and soliton splitting.
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I. INTRODUCTION

Since the realization of a Bose-Einstein condensate �BEC�
in dilute alkali-metal atomic vapors, rapid development took
place in this field. In particular, the experimental observation
of dark �1,2� and bright �3,4� solitons in a BEC has drawn
attention to various aspects of dynamics of nonlinear matter
waves, such as vortex dynamics �5�, soliton propagation �6�,
interference patterns �7�, and modulational instability �MI�
�8,9�. A single-species BEC can be well described by the
nonlinear Schrödinger �NLS� equation, alias the Gross-
Pitaevskii �GP� equation, which has been analyzed from dif-
ferent points of view �10�. Various effects have been ob-
served in multicomponent BECs, such as separation of
components in a binary mixture �11�, pattern formation �12�,
and interference between two condensates �13�. Multicompo-
nent BECs are described by coupled NLS or GP equations.
In one of the first theoretical works on this topic, Pu and
Bigelow studied properties of the ground state and collective
excitation in this model by numerical simulations �14�. Much
more work has been done for theoretical analysis of binary
BEC mixtures, but it was chiefly dealing with models of
repulsive condensates; see, e.g., Refs. �15,16� and references
therein. Recently, multicomponent models were extended to
deal with soliton dynamics in spinor BECs; see Refs.
�17–20�.

In this paper, we investigate coupled GP equations for
two-component self-attractive BECs �ones with negative
scattering lengths� and present a soliton solution built on top
of a plane-wave background. In the absence of the cross
interaction between plane waves in the two components
�cross phase modulation �XPM��, the solution effectively
keeps properties of the single-component BEC, such as the
MI; in the presence of XPM, the solution exhibits different
properties, such as restriction of the MI and soliton splitting.

II. ANALYSIS AND RESULTS

The two-component BEC with attractive interactions be-
tween atoms is described by coupled GP equations. In a nor-
malized form, they are

i
�� j

�t
= −

1

2

�2� j

�x2 − g� ajj

a12
�� j�2 + ��3−j�2�� j, j = 1,2, �1�

where ajj and a12 are, respectively, the negative scattering
lengths of intra- and interspecies atomic collisions, x is mea-
sured in �characteristic� units of x0�1 �m, t is in units of
mx0

2 /�, � j �j=1,2� is in units of 	n0 �n0 is the maximum
density in the initial distribution of the condensate�, and the
interaction constant is defined as g=4�n0x0

2 �a12�.
Generally, the coupled equations �1� are not integrable.

However, in the case of a11=a22=a12 Eqs. �1� amount to an
integrable Manakov system �21,22�. In this case, by means
of the Darboux transformation �23,24�, we generate an exact
vectorial �two-component� solution which accounts for a
soliton interacting with a plane wave:

� j = Aje
i��1 +

4i�G1

F
� +

2�C̄j

	g

G2

F
exp� i

2
�� , �2�

where j=1,2, and F, G1, and G2 are given by

F = De�1 + A2De−�1 − 2iA2�L − L̄�sin �1 + Ce−�2, �3�

G1 = Le�1 − A2L̄e−�1 − �L�2e−i�1 + A2ei�1, �4�

G2 = Le−�i/2���1+�2�+��1−�2�/2 + A2e�i/2���1−�2�−��1+�2�/2; �5�

�1 � MIx + ��� − k�MI + �MR�t/2 − �10, �6�

�2 � �x + ��t + �10, �7�

�1 � MRx + ��� − k�MR − �MI�t/2 + �10,

�2 � �x + ��2 − �2�t/2 − �10,

� � kx + �g�A1
2 + A2

2� − k2/2�t ,

with L�MR+�+k+ i�MI+��, MR+ iMI�	�k+�+ i��2+A2,
and D��L�2+A2, A�	4g�A1

2+A2
2�, C��C1�2+ �C2�2. Here
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k ,�10,�10 and A1 ,A2 are arbitrary real constants, and C1 and
C2 are arbitrary complex constants subject to the constraint
A1C1+A2C2=0. In the case of zero amplitude A1=A2=0, so-
lution �2� amounts to � j = ��	 j /	g��sech ��exp�−i�2� where
����x+��−�0, �0 is an arbitrary real constant, and 	1 and 	2

are arbitrary complex constants obeying the relation �	1�2

+ �	2�2=1. This result is consistent with that reported in Ref.
�22�, which was obtained by means of the inverse scattering
transform. It corresponds to a stable vector soliton with ve-
locity Vsol=−�, width �−1, and amplitudes As1= ��	1 � /	g,
As2= ��	2 � /	g that satisfy the relation As1

2 +As2
2 =�2 /g. The

total norm of the vectorial soliton �proportional to the num-
ber of atoms in the binary condensate� is Q�Q1+Q2
=
−


+
���1�2+ ��2�2�dx=2 �� � /g, with Qj =2 �� � �	 j�2 /g. Fur-
ther, its momentum and Hamiltonian are M �M1+M2=
−�i /2�
−


+
���̄1�1,x−�1�̄1,x�+ ��̄2�2,x−�1�̄2,x��dx=VsolQ and
H= �1/2�
−


+
����1,x�2+ ��2,x�2�−g���1�2+ ��2�2�2�dx=M2 / �2Q�
− �g2 /24�Q3.

On the other hand, when the soliton’s amplitudes vanish,
A1s=A2s=0 �e.g., �=0�, solution �2� reduces to a plane wave
of the form �1=A1ei� ,�2=A2ei� with amplitudes A1,2, wave
number k, and frequency �=g�A1

2+A2
2�−k2 /2. Thus, in the

general case the exact solution �2� represents a vectorial soli-
ton embedded in a plane-wave background in two-
component BECs. It should be noted that the condition
A1C1+A2C2=0 determines the cross interaction between the
two amplitudes of the plane-wave background. In fact, when
C1=C2=0, the second term in expression �2� vanishes, then
each soliton component is embedded in its own background,
which realizes self-interaction in the two-component BEC;
see a more detailed consideration of this special case below.
If C1�0 and C2�0, the second term in solution �2� is dif-
ferent from zero, and then the above-mentioned condition
A1C1+A2C2=0 implies that coefficients C1 and C2 depend
on the plane-wave amplitudes A2 and A1, respectively, which
is a manifestation of the cross interaction in the two-
component solution.

To understand the behavior of solution �2�, we first con-
sider in more detail the above-mentioned case of C1=C2=0,
when the solution �2� simplifies to

� j = Aje
i��1 − 2�W� , �8�

W �
1

A
�a cosh �1 + sin �1

cosh �1 + a sin �1
− i

b sinh �1 + c cos �1

cosh �1 + a sin �1
� , �9�

with a=−iA�L− L̄� /D, b=A�L+ L̄� /D, and c= �A2− �L�2� /D.
Note that expressions �8� and �9� do not include �2 and �2,

FIG. 1. A set of snapshots
showing exact solution �8� by dot-
ted curves, and numerical results,
obtained under nonintegrable con-
dition �15�, by solid curves �in
fact, the dotted and solid plots
completely overlap�. Parameters
are �=0.8, k=−0.1, g=1, A1=1,
A2=1.2, �10=6 �the last corre-
sponds to amplitude �13� of the
initial perturbation triggering the
onset of the modulational instabil-
ity 	=2.4788�10−3�, and �10=0.

FIG. 2. Spatiotemporal distribution of densities of the two com-
ponents in solution �16� �the phase difference between the compo-
nents is ��. Parameters are k=−0.1, g=1, A1=1, A2=0.8, �10=−2,
and �10=0.
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and the two components share a common shape. This solu-
tion is similar to that for the single-component BEC. As
MI�0, from Eq. �8� one can extract the total norm of the
soliton component of the solution, which we define as

�
−


+


����1�2 − A1
2� + ���2�2 − A2

2��dx =
��b2 + c2�

g�MI�
I , �10�

I � �
−


+
 � + A cosh x sin�Bx + 
�
�cosh x + a sin�Bx + 
��2dx , �11�

with 
=−�MI�1+B2�t /2+B�10+�10 and B=MR /MI. In de-
riving the above expression, use has been made of relations
��1�±
 , t��2=A1

2 and ��2�±
 , t��2=A2
2, which are background

densities in the two-component condensate. It can be verified
that integral �11� does not depend on 
; hence the soliton’s
total norm is a conserved quantity.

When MI=0, the soliton velocity vanishes, i.e., the plane
wave completely traps the soliton. The creation of such a
trapped soliton is actually a manifestation of the MI �25�.

Setting, in particular, �=−k and A2��2 yields MI=0, and W
in solution �8� becomes

W =
1

A

� cosh �1 + A sin �1 − iMR sinh �1

A cosh �1 + � sin �1
, �12�

with �1��MRt /2−�10 and �1�MR�x−kt�+�10, where MR

=	A2−�2, and �10 and �10 are arbitrary real constants. Ex-
pression �12� is periodic in x, with the period �=2� /MR,
and aperiodic in t. To better understand the MI development
provided by this solution, we assume that

	 � exp�− �10� �13�

is small �it then plays the role of a small amplitude of the
initial perturbation that triggers the onset of the MI�, and
linearize the initial form of solution �8� �at t=0� in 	, taking
Eq. �12� into account, which yields

� j�x,0� � Aje
i��� − 	� sin�MRx + �10�� , �14�

where ���A2−2�2− i2�MR� /A2 with ���2=1, �
�4�MR�MR− i�� /A3. Direct numerical simulations of the
underlying equations �1� demonstrate that the evolution of

FIG. 3. A set of snapshots of
exact solution �18� for �=−1.5, k
=−0.1, g=1, A1=1, A2=1.2, �10

=−6, �10=0, and �20=−5, �20=0.

FIG. 4. The same as in Fig. 3,
but obtained from a numerical so-
lution of Eqs. �1� with the nonlin-
ear constants taken as per Eq.
�15�. Other parameters are identi-
cal to those in Fig. 3.
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initial configuration �14�, which is a plane wave with a small
modulational perturbation added to it, indeed closely follows
the exact solution provided by Eqs. �8� and �12�.

The above results were obtained under the Manakov inte-
grability conditions a11=a22=a12, which may not be exactly
satisfied in reality. However, the actual difference of the scat-
tering lengths in a BEC mixture of two different hyperfine
states of the same atomic species is very small �26�, and
therefore the Manakov model may be used as a good ap-
proximation. For instance, taking

a11 = − 1.03, a12 = − 1, a22 = − 0.97, �15�

numerical solution of Eqs. �1� yields the picture of the MI
development shown in Fig. 1. Comparing it with the exact
solution obtained for a11=a22=a12 demonstrates that the two
solutions are virtually indistinguishable.

We now turn to solution �2� in a more general situation,
with nonzero coefficients C1,2 and A1,2, subject to the re-
quirement A1C1+A2C2=0 �recall that this condition is a part
of the exact solution �2��, which will make it possible to
explicitly consider cross-interaction �XPM� effects between
two plane waves in the two-component BEC. In this case, we

may set C1=4	gA2C and C2=−4	gA1C, where C is the ar-
bitrary complex constant. Further, we fix �=−k in solution
�2� and analyze two representative situations in detail.

�i� Setting A2=�2, i.e., 4�A1
2+A2

2�=As1
2 +As2

2 , solution �2�
can be written as

� j = − ei��Aj tanh
�2

2
+ �− 1� j	2A3−j

exp�i�3�
cosh��2/2�� , �16�

where �2���x−kt�+�10, ��kx+ ��2 /4−k2 /2�t, �3��2t /8
+�10, and �10 and �10 are arbitrary real constants; the density
distribution corresponding to this solution is ��1�2+ ��2�2
= �A2

2+A1
2��1+sech2��2 /2�� �see Fig. 2�. Solution �16� may be

regarded as a superposition of bright and dark solitons, pro-
duced by the action of the XPM. In particular, the solution
with A1=0 or A2=0 is a complex consisting of the bright and
dark solitons in the first and second species, or vice versa.
From the imposed condition A2=�2, it follows that �� �
=	4g�A1

2+A2
2�, showing that the width of the soliton is con-

trolled by the amplitude of the plane wave. In Fig. 2 one may
observe a shift of the soliton’s peak due to the action of the
XPM.

FIG. 5. A set of snapshots of
the general-form analytical solu-
tion �2�. Parameters are �=1.5, �
=−0.4, k=−0.5, g=1, A1=1, A2

=1.2, �10=5, �10=0, C1=1, and
C2 is determined by the constraint
A1C1+A2C2=0.

FIG. 6. The same as in Fig. 5,
but for a numerically found solu-
tion of Eqs. �1� with a11=−1.03,
a12=−1, a22=−0.97. Parameters
are identical to those in Fig. 5.
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�ii� In the case when A2��2, i.e.,

4�A1
2 + A2

2� � As1
2 + As2

2 , �17�

solution �2� can be written as

� j = Aje
i��1 − 2�W1� − �− 1� j2�A3−jW2, �18�

W1 =
1

A

� cosh �1 + A sin �1 − iMR sinh �1

A cosh �1 + � sin �1 + Ae−�2
, �19�

W2 =
1

A

�MR + i��e�−i�1+�1�/2 + Ae�i�1−�1�/2

A cosh �1 + � sin �1 + Ae−�2
e�−�2+i��−�2��/2,

�20�

with �1��� /2�MRt−�10, �2���x−kt�+�20, �1�MR�x−kt�
+�10, �2�−kx+ 1

2 �k2−�2�t−�20, and MR=	A2−�2, while
�10, �20, �10, and �20 are arbitrary real constants. From ex-
pressions �19� and �20�, one can see that W2→0 as �2
→ ±
, and W1→W as �2→ +
 �recall that W is given by
expression �12��, and W1→0 as �2→−
. Thus, taking into
regard the form of solution �8� and expression �12�, one may
conclude that solution �18� describes partial MI, as the
growth of the instability can be restrained in the limit of �2
→−
, as illustrated by Fig. 3. However, if the nonlinear
constants a11, a12, and a22 slightly deviate from the inte-
grable case a11=a12=a22, a numerically found counterpart of
solution �18� is conspicuously different from it �see Fig. 4�.

Finally, we turn to solution �2� in the general case. From
expressions �6� and �7�, one can see that the solution contains
terms with different velocities V1=− 1

2 ���−k�+�MR /MI� and
V2=−�, respectively, which leads to splitting of the soliton
part of the solution on top of the plane wave into two wave
packets, high- and low-frequency ones, as shown in Fig. 5.
Further, in Fig. 6, this exact analytical solution, obtained in
the integrable case with a11=a12=a22=1, is compared with a
numerically found solution for the generic nonintegrable ver-
sion of Eqs. �1�, with the normalized scattering lengths cho-
sen as in Eq. �15�. Figure 6 demonstrates that the soliton part
of the numerically found solution, on top of the plane-wave
background, also splits into two packets, a stable high-
frequency and an unstable low-frequency component.

III. CONCLUSION

We have presented exact solutions for coupled Gross-
Pitaevskii equations describing binary BECs, in the form of a
soliton placed on top of a plane-wave background. It was
shown that, when the intensity of the plane-wave background
exceeds a quarter of the soliton’s peak intensity, which is
expressed by condition �17�, the exact solution describes de-
velopment of the modulational instability, which can be used
in physical applications to generate a soliton train. Moreover,
it was shown that this soliton train can also be generated
even if parameters of the coupled equations do not exactly
satisfy the corresponding integrability conditions. Also, we
have discussed the cross interaction �XPM� of the plane-
wave backgrounds in the two components of the system. It
was shown that the XPM between two plane-wave ampli-
tudes leads to a � phase difference between the components,
and, in the most general case, it causes splitting of the soliton
and formation of a complex pattern. In particular, under the
same condition �17� as mentioned above, the XPM interac-
tion between the two plane waves helps to effectively re-
strain the modulational instability.

It is relevant to mention that the coupled underlying equa-
tions �1� are also integrable in the case of g�0 and a11
=a22=a12 �a mixture of self-repulsive condensates�, and also,
with either sign of g, for a11=a22=−a12 �27�, which corre-
sponds to a mixture of two self-repulsive condensates that
attract each other, or two self-attractive ones which repel
each other. In the former case, when single-component bright
solitons are impossible due to the intraspecies repulsion, so-
called symbiotic solitons exists and are stable, being sup-
ported by the interspecies attraction �28�. However, direct
attempts to construct bound states of plane waves and soli-
tons by means of the Darboux transformation lead to singular
solutions in these cases.
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