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We investigate the effect of spin transport on nonlinear excitations in a ferromagnetic nanowire with non-
uniform magnetizations. In the presence of spin-polarized current, the exact soliton solutions propagating along
the wire’s axis are obtained in two cases of high or low quality factors �Q�. The current can change the
velocities of magnetic solitons and affect the solitons’ collision with phase shift. Also, ac current induces
vibration of the center of the solitons.
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I. INTRODUCTION

In magnetic multilayers, the spin-polarized current causes
many unique phenomena, such as spin-wave excitation,1

magnetization switching and reversal,2–6 and enhanced Gil-
bert damping.7 These phenomena attribute to the spin-
transfer effect, proposed by Slonczewski8 and Berger.9 Mac-
roscopically, the magnetization dynamics in the presence of
spin-polarized current can be described by a generalized
Landau-Lifshitz-Gilbert �LLG� equation, including terms re-
lated to spin-polarized current, spin accumulation, and spin-
transfer torque. Bazaliy et al. considered spin-polarized cur-
rent in half-metal and reduced the current effects as a
topological term in the LLG equation.10 The spin torque has
different forms for uniform magnetization and nonuniform
ones. In the uniform case, such as spin-valve structure, the

spin torque is �a=−�aJ /Ms�M� �M�M̂p� , where M is the

magnetization of the free layer, M̂p is the unit vector along
the direction of the magnetization of the pinned layer, Ms is
the saturation magnetization, and aJ is a model-dependent
parameter and is proportional to the current density.8 For the
nonuniform magnetization, Li and Zhang gave a spin torque
taking form �b=bJ�M/�x, where bJ depends on the materi-
als parameters and current.11 The spin torque is very different
from precession and damping terms in the LLG equation. It
can induce not only precession but also damping. Due to the
unique property of the spin torque, the magnetization dynam-
ics has been extensively studied in spin-valve pillar
structures,12,13 magnetic nanowires geometry,14 and point-
contact geometry.15

Nonlinear excitations are general phenomena in magnetic
ordered materials. Extensive investigations have been made
in insulated thin films for easy excitation and detection, such
as YIG.16 In confined magnetic metals, nonlinear excitations
are also interesting due to the interaction between spin-
polarized current and local magnetizations. The solitary ex-
citations of isotropic ferromagnets in the present of spin-
polarized current is well studied using the inverse scattering
method.17

In this paper, we will discuss the linear and nonlinear
magnetization dynamics in a uniaxial ferromagnetic nano-
wire injected with current. By stereographic projection of the
unit sphere of magnetization onto a complex plane,18 we

transform the LLG equation into a nonlinear equation of
complex function and obtain two kinds of soliton solutions
propagating along the wire’s axis for a high-Q model and a
low-Q one �Q=Hk / �4�Ms� is the quality factor�. From these
solutions, we study the effect of a spin-polarized current on
the nonlinear excitation of the magnetization in the ferro-
magnetic metal nanowire.

II. HIGH-Q CASE

We consider a very long ferromagnetic nanowire with a
uniform cross section, as shown in Fig. 1. To excellent ap-
proximation, this nanowire can be viewed as infinite in
length. The electronic current flows along the long length of
the wire, defined as the x direction. The z axis is taken as the
directions of the uniaxial anisotropy field and the external
field. Also, we assume the magnetization is nonuniform only
in the direction of current. The current injected in the nano-
wire can be polarized and produces a spin torque acting on
the local magnetization, which is written as �b=bJ�M/�x,
where bJ= Pje�B / �eMs�, P is the spin polarization of the
current, je is the electric current density and flows along the
x direction, �B is the Bohr magneton, and e is the magnitude
of electron charge.11 So, the modified LLG equation with this
spin torque is

�M

�t
= − �M � Heff +

�

Ms
M �

�M

�t
+ �b, �1�

where � is the gyromagnetic ratio, Ms is the saturation mag-
netization, � is the Gilbert damping parameter, and Heff is
the effective magnetic field including the external field, the

FIG. 1. Geometry of the nanowire.
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anisotropy field, the demagnetization field, and the exchange
field. This effective field can be written as Heff
= �2A /Ms

2��2M/�x2+ ��HK /Ms−4��Mz+Hext�ez, where A is
the exchange constant, HK is the anisotropy field, Hext is the
applied field, and ez is the unit vector along the z direction.

When the uniaxial anisotropy field is larger than the de-
magnetization field, namely, Q�1 �This is the case for some
metallic magnetic films19 and multilayers20�, we can get dark
magnetic solitons for the mz component. After rescaling the
time coordinate and space coordinate by characteristic time
t0=1/ ���HK−4�Ms�� and length l0=�2A / ��HK−4�Ms�Ms�
and taking M=Msm , the LLG equation can be simplified as

�m

�t
= − �m �

�2m

�x2 � − �mz +
Hext

HK − 4�Ms
��m � ez�

+ �m �
�m

�t
+

bJt0

l0

�m

�x
. �2�

Considering the fact that the magnitude of the magnetization
is a constant at temperatures well below the Curie tempera-
ture, namely, m2= �M/Ms�2=1, it is reasonable to take ste-
reographic transformation,18 �= �mx+ imy� / �1+mz�. Then,
the equation about the complex function � is obtained,

i�1 − i��
��

�t
=

�2�

�x2 − 2
�*

1 + ��*� ��

�x
�2

−
Hext

HK − 4�Ms
�

−
1 − ��*

1 + ��*� + i
bJt0

l0

��

�x
. �3�

We will get linear and nonlinear dynamics of magnetization
from �.

As shown by Li and Zhang,11 the spin-wave solution of
the LLG equation is obtained in the presence of spin-
polarized current. In the high-magnetic field, the deviation of
magnetization from the the direction of the field is small. So,
we only consider low-energy excitation. We take the spin-
wave ansatz

m = �	mxex + 	myey�ei�k·r−
t� + ez, �4�

corresponding to �=�0ei�k·r−
t�, where �0= �	mx+ i	my� /2,
and 	mx and 	my represent the rescaled amplitude of the spin
waves in the x and y directions. Inserting � into Eq. �3� and
keeping the linear terms in �0, we obtain the dispersion re-
lation of the spin wave


 = �1 + i��
0�1 + l0�
2�kx − bJMs/�A�2� , �5�

where


0 = ���HK − 4�Ms + Hext� − bJ
2Ms/2�A�/�1 + �2� ,

�6�
l0�

2 = 16�2A2/�8�2MsA�HK − 4�Ms + Hext� − Ms
2bJ

2� .

It is easy to see that the spin-polarized current changes the
energy gap. For large current density, je

�e / ��P��2AMs�HK−4�Ms+Hext�, the gap vanishes. This
means that without other stimulation, such as thermal effects,
the spin-polarized current excites spin waves when its den-
sity increases beyond a critical value. The Gilbert damping
gives the energy gap a rescaling and damps the spin wave.

Now we investigate the nonlinear excitation of LLG equa-
tions. Considering small deviations of magnetization from
the equilibrium direction �along the anisotropy axis� corre-
sponding to mx

2+my
2
mz

2, or, ���2
1, and taking the long-
wavelength approximation,21 where l0k
1, and k is the
wave vector of spin wave that constitutes nonlinear excita-
tions, Eq. �3� can be simplified, by keeping only the nonlin-
ear terms of the order of the magnitude of ���2�. Without
damping, we obtain the following nonlinear Schrödinger
equation

i
��

�t
=

�2�

�x2 − �1 +
Hext

HK − 4�Ms
�� + 2���2� + ibJ

t0

l0

��

�x
.

�7�

By the Hirota bilinear method,22 the one- and two-soliton
solutions of Eq. �7� are easily obtained. The one-soliton so-
lution is �=kRei��I+�1+Hext/�HK−4�Ms��t� / cosh��R+C /2�, where
�=k�x+ �bJt0 / l0− ik�t�, eC=e2��� / �4kR

2�, the subscripts R and I
denote the real and imaginary parts, and k is an arbitrary
complex parameter and can be determined by the initial soli-
ton location and amplitude. From �, we obtain the solution
of magnetization,

mx =
2kR

�
cos	�I + �1 +

Hext

HK − 4�Ms
�t
cosh	�R +

C

2

 ,

my =
2kR

�
sin	�I + �1 +

Hext

HK − 4�Ms
�t
cosh	�R +

C

2

 ,

mz =
1

�
	cosh2��R +

C

2
� − kR

2
 , �8�

where �=cosh2��R+C /2�+kR
2 .

This one-soliton solution represents a 2� domain wall
which is the bound state of a double � wall.23 The height of
the soliton is the rescaled magnetization. The velocity the of
wall is V=−bJ−2kIl0 / t0. As we see it, the spin-polarized cur-
rent alters the soliton velocity as −bJ, proportional to the
electron current density. The external fields induce the mx
and my components of the soliton to oscillate periodically.
If applying alternating currents, bJ= Pje�B / �eMs�cos�
t�,
and the only change to the solutions is �=k�x
+bJ / �
l0�sin�
t0t�− ikt�. The center of the mass of solitons
vibrate with the same frequency as ac currents. Inversely, we
consider the effect of nonlinear excitations on the spin-
polarized current. In ferromagnetic material with nonuniform
magnetizations and adiabatic approximation, the spin-current
density is jx= ��B /e�Pjem11. Thus, the one-soliton excitation
in nanowire gives spin current a magnetic pulse like the
optical pulse in nonlinear media. In the same way, we can
get the two-soliton solutions �= �g1+g3� / �1+ f2

+ f4�ei�1+Hext/�HK−4�Ms��t, and nonlinear dynamics of magneti-
zation,

mx =
� + �*

1 + ��* , my = − i
� − �*

1 + ��* , mz =
1 − ��*

1 + ��* , �9�

where
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g1 = �1e�1 + �2e�2,

g3 = e�1+�1
*+�2+�1 + e�1+�2

*+�2+�2,

f2 = e�1+�1
*+R1 + e�2+�2

*+R2 + e�1+�2
*+	 + e�1

*+�2+	*
,

f4 = e�1+�1
*+�2

*+�2+R3, �10�

with

e�1 =
��1�2�2�k1 − k2�2

�k1 + k1
*�2�k1

* + k2�2 ,

e�2 =
��2�2�1�k1 − k2�2

�k2 + k2
*�2�k2

* + k1�2 ,

eR1 =
��1�2

�k1 + k1
*�2 ,

eR2 =
��2�2

�k2 + k2
*�2 ,

e	 =
�1�2

*

�k1 + k2
*�2 ,

eR3 =
��1�2��2�2�k1

* − k2
*�4

�k1 + k1
*�2�k2 + k2

*�2�k1 + k2
*�4

, �10�

and �i=ki�x+ �bJt0 / l0− iki�t�, k1, k2, �1, and �2 are four com-
plex parameters and determined by the initial conditions. In
the limits t→ ±�, the two-soliton solution is reduced to two
single solitons similar to Eq. �8�. That is to say, the two-
soliton solution is combined with two one-solitons asymp-
totically. Asymptotical analysis indicates that the two soli-
tons collide without amplitude switching, but the associate
phase shift is 	�= �R3−R2−R1� /2, namely, the center of the
solitons displace with 	�. We show this two-soliton solution
in Fig. 2, where we use the materials parameters of CoPt3:
HK=33778 Oe, A=1.0�10−6 erg/cm, Ms=1125 G, �
=1.75�107 Oe−1 s−1, P=0.35, and take Hext=2000 Oe, je
=106 A/cm2. So, we get t0=2.91�10−12 s, l0=3.01
�10−7 cm, bJ=18 cm/s. The amplitudes and widths of mx
and my vary periodically with time because of the oscillating

factor induced by the external and anisotropic fields. The
two-soliton excitations bring the spin current two magnetic
pulses with different velocities.

III. LOW-Q CASE

When Q�1, such as in permalloy, the nonlinear solutions
of Eq. �1� are different. In this case, the characteristic time
and length are t0=1/ ���4�Ms−HK�� and l0

=�2A / ��4�Ms−HK�Ms�. By the same method, the LLG
equation �1� is transformed into a nonlinear Schrödinger
equation

i
��

�t
=

�2�

�x2 + �1 −
Hext

4�Ms − HK
�� − 2���2� + ibJ

t0

l0

��

�x
.

�12�

The one-soliton solution is �=−�ei���1+ei��
+ �1−ei��tanh�� /2��, where �=kx+ �2�2+k2+kbJt0 / l0+1
+Hext / �4�Ms−HK��t+�0, �=arctan�P�4�2− P2 / �P2

−2�2��, and �= P�x− ��4�2− P2−2k+bJt0 / l0�t�+�0, in which
k, �, P, �0, and �0 are real constants. So, the solutions of
magnetization are

mx =
�

�
�cos�� + �� − cos � + �cos�� + ��

+ cos ��tanh��/2�� ,

my =
�

�
�sin�� + �� − sin � + �sin�� + ��

+ sin ��tanh��/2�� ,

mz =
1

4�
�4�1 − �2� + P2 − P2 tanh2��/2�� , �13�

where �= �4�1+�2�− P2+ P2 tanh2�� /2�� /4. In this solutions,
in addition to the change of velocity, spin-polarized current
induces the oscillation of the mx and my components.

Also, it is easy to find the two-soliton solutions of Eq.
�12� �=−�ei��1+g1+g2� / �1+ f1+ f2�, and the nonlinear evo-
lution of magnetization like that of Eq. �9�. The functions in
the solution are as follows:

g1 = ei�1 exp �1 + ei�2 exp �2,

g2 = Cei��1+�2�exp��1 + �2� ,

f1 = exp �1 + exp �2,

f2 = A exp��1 + �2� ,

where

� j = Pj�x − ��4�2 − Pj
2 − 2k + kbJt0/l0�t� + � j0,

� j = arctan�Pj
�4�2 − Pj

2/�Pj
2 − 2�2��, j = 1,2,

FIG. 2. The elastic collision of two dark solitons of mz compo-
nent where k1=1+0.5i, k2=2−0.5i, �1=0.4+2i, �2=2i.
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C =
�P1 − P2�2 + ��4�2 − P1

2 − �4�2 − P2
2�2

�P1 + P2�2 + ��4�2 − P1
2 − �4�2 − P2

2�2
,

with P1, P2, �10, and �20 are real constants. Using asymptoti-
cal analysis, we find that the two solitons collide with phase
shift 	�=ln C. After the collision, the centers of solitons
displace with ln A. In Fig. 3, we plot this two-soliton solution
with material parameters of permalloy: HK=10 Oe, A=1.3
�10−6erg/cm, Ms=800 G, P=0.5 and Hext=2000 Oe, je
=106 A/cm2. The characteristic time and length is t0=4.55
�10−11s, l0=1.14�10−6cm, and bJ=51 cm/s.

When the external magnetic field deviates from the z axis,
in general, the equations cannot be exactly solved.24 How-
ever, some special solutions can be found. For example, we
consider the case that Hext=Hxex+Hzez and Q�1. In the
presence of spin-polarized current, there exists a dynamic
soliton solution

mx =
1 − D2 cosh2 �

1 + D2 cosh2 �
cos��Hzt0t� ,

my =
1 − D2 cosh2 �

1 + D2 cosh2 �
sin��Hzt0t� ,

mz =
2D cosh �

1 + D2 cosh2 �
,

where �=�1−�t0Hx�x+bJt0 / l0t�, D=���Hxt0� / �1−�Hxt0�.
This solution is plotted in Fig. 4 with the same material

parameters as above. The depth and width of the trough de-
crease as Hx increases. The amplitudes of mx and my oscillate
with frequency �Hz. According to this solution, when the
external field perpendicular to wire’s axis vanishes, the mag-
netization rotates purely in a plane parallel to the wire’s axis.

IV. CONCLUSION

Using a stereographic projection, we transform the modi-
fied LLG equation with a spin torque into a nonlinear equa-
tion of complex function. By the Hirota bilinear method, we
get one- and two-soliton solutions describing nonlinear mag-
netization in ferromagnetic nanowire with spin-polarized
current, and these solitons propagate along the wire’s axis.
These results indicate that the soliton velocity varies due to
the spin torque, the change is proportional to current density,
and the amplitudes are modulated by spin-polarized current.
The centers of the solitons vibrate periodically with the fre-
quency of alternating currents. In the case of multisoliton
solutions, magnetic solitons collide elastically with phase
shift.
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