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Intrinsic localized states and nonlinear excitations of Bloch electrons in electric fields
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Bloch electrons with Coulomb interaction will take localized motion on a discrete lattice in the electric
fields. They are always oscillatory in time, with oscillatory frequencies determined by electric fields. Their
nonlinear excitations are the spatially localized and time periodic or quasiperiodic, and possess multiple
frequencies and comprise multiple soliton components.
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This paper addresses the dynamics of Bloch electronmethod, the exact single-soliton solution of the extended
with Coulomb interaction on a discrete lattice in the electricHubbard mode[Eq. (1)] can be written as
fields. The analysis is based on exact calculations with the . .
inverse scatterir):g method. The results are interesting, andin(t)=sinhg sectign+2 sinhBg(t) — Bn,]
include intrinsic localized states and nonlinear excitations of _ €a
Bloch electrons. Such a system can be written as an extended X exr{ - mea( €4t + w—sm( wat)
Hubbard modet, which is relevant to a variety of fields, a
including exciton states in molecular crystaisscillations of ~ WhereQ) =2 coshg s the carrier-wave frequency, ajds a
the sequential tunneling in superlattieslectron excitations ~ constant, while
in polaronic context$,and the localized properties of exci- o
tations in ferroelectric materiafs. . f(1)=A+B+C+ 2, Jon
The Hamiltonian of the extended Hubbard model is thus m=1

+iQCf(t)}, 2
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and
with the anticommutation relatiofws,, , ¥} ={¢% 5} =0,
{n ") =5nm, Where|y(t)|? is proportional to the elec- g(h)=J eae,| 1—cogeaet)
tron density at siten and timet, V is the nearest-neighbor 0 €aey
intersite overlap integrale is the electron charge is the o
lattice constantU is the Coulomb interaction between two +3 g, €aey [1—co$(eaed+2mwa)t]
electrons,ey and e, are dc and ac electric fields, amg, is M1 T\ @, eaeq+2Mw,
the frequency of the ac electric field, respectively. Usually "
this model is applied to tightly bound orbitals. Thehis N 1—cod[eaey—2maw,]t} S eae,
quite large, perhaps 10 eV. The bandwidths sometimes eaey—2Mawy, =/ U WP
taken to be smaller. However, some of the most interesting
phenomena seem to occur fdr=V. For simplicity, we can 1-cog(eaeq+(2m+1)wy)t]
chooseU =V=1. If we neglect the nonlinearity, the system eaegt(2m+1)w,
will reduce to a linear limit; the electron statkg,(t) can be
expressed as a linear combination of Wanﬁer stafBise _ 1_C°S{[ea’5d_(2m+l)w3]t}} (4)
discreteness of the system gives rise to some interesting fea- eaeg—(2m+1)w, '
tures which are not present in the continuum limit. where
There has been tremendous progress in the past 30 years
in developing analytical methods, such as the inverse scatter- eae, . eaey
ing method’ for finding exact solutions of one-dimensional 0 toif -
Wa Wa
nonlinear discrete systerﬁsThe basic idea of the inverse A= cae (5)
a

sin(eaegt) i eaey
i
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scattering method is to transform a nonlinear problem into a

+0,
linear scattering problem. According to the inverse scattering
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eae, eaey case. Itis concluded that in the limit of a dc electric field, the
Jom =+2m system exhibits a periodic evolution which is a nonlinear
Wy (OF) S . .

B= (6)  counterpart of Bloch oscillation€. This nonlinear Bloch os-

0 if €aeqy £492m cillati01r13 has been found in experiments of waveguide
w, arrays.

If an ac electric field alone exists, we can easily find that

. aey the single-soliton solutiofEg. (2)] oscillates with the period
+Jom+1 P . =*+(2m+1) T=2m/w, in time and remains bounded, and its oscillatory
C= (7)  period is the same with that of an ac electric field. This
o if 22, +(2m+1) means that Bloch electrons are effectively localized by the
w5 ’ action of an ac electric field. If Bloch electrons are initially

andJ(eae,/w,) (M=0,%x1,...) areBessel functions of ggiltﬁce(?ié?dspace, they can be dynamically trapped by an ac

tmh:nft'lrj?; k;r:% r:gfrﬁ)]e;?g/ely. The corresponding energy, mo- As a measure of localization, we can introduce the mean
' width W of a pulse,

eae,

E=—4sinhB, P=4sinhg, M=28. (8) " 12
2 2
Equation (2) represents precisely the intrinsic localized n;_w N[ yn(0)]
state of Bloch electrons on a discrete lattice. The envelope of W=| —— | , 9)
this soliton is always a hyperbolic secant, and it is the same E (D)2
as that of the continuum case, but the motion of its center is w0

different from the continuum caséVhen the external elec-

tric fields are zero, we find that, in contrast to the diffusingwhere the pulse center is assumed to be at ans#t®. Thus

motion of Bloch electrons for the potential-free case in thefor a complete localization of the energy at the center ¥ite,

linear limit,® Bloch electrons will take localized motion un- becomes zero. The oscillations W are 7/2 out of plane,

der the action of nonlinear Coulomb interactionThese are  due to norm conservation. We can find the time evolution of

the intrinsic localized states. the mean width of a pulse exhibiting a localization of Bloch
We can readily show that this single-soliton solution has eelectrons with Coulomb interaction in dc-ac electric fields.

continuous translational symmetry on account of the arbiThe mean widthV of a pulse is oscillatory, and a monotoni-

trariness ofn,. If we omitted the nonlinear strength, the  cal decrease does not exist as time changes. This is different

equation of motion of Bloch electrons is invariant under thefrom the initial phase of a blowup in the continuum system.

following transformations: ify,— (—1)"¢,, t——t for the =~ We note again that the mean width of the pulse never reaches

potential-free case or the electric field as any odd function oZ€ro.

time, there exist “staggered” localized states. In this case, Summing up the previous discussions, we should empha-

the system possesses the following reflectional symmetry: i§ize the differences between the ac and dc-ac cases for in-

an unstaggered statle,e'a is a solution of the system, then trinsic localized states and oscillations. In the ac case the

the staggered state—(1)"y,e'“a' is also a solution of the oOscillation period is the same as that of an ac electric field.

system. Under reflectional transformation, the single-solitortiowever, in the dc-ac case the situation is quite different.

solution[Eq. (2)] transforms to a set of solutions identical to Oscillation frequencies are determined by a coupling of the

the original set in Eq(2), but with a different parametriza- magnitudeey of a dc electric field and the frequenay, of

tion. It follows that this single-soliton solution possesses theéth ac electric field. They have nothing to do with the mag-

exact self-dual reflectional symmetry. nitude e, of an ac electric field. We believe such a character
As a generalization of the well-known linear cdsthe may be related to Wannier-Stark ladd&tecause of the

single-soliton solutiodEq. (2)] is always oscillatory in time €effect of a dc field.

and bounded, i.e., the oscillatory of Bloch electrons with The two-soliton solutiong,(t) can be written as

Coulomb interaction in dc-ac electric fields is periodic, while

the oscillatory frequencies are determined by the coupling of sinh(2B)[C1+ Coexp(iQpf(t))] . F{ inea( ot

the magnitudesy of the dc electric field and the frequency ¥nlt)= 2_ - d

w, of the ac electric field® Cat (Qe1)cog Qpf ()]
For the case of a dc electric field, it can be readily seen €,

that the single-soliton solutiofEq. (2)] oscillates in time. + —sin(wgt)

This means that Bloch electrons with Coulomb interaction in a

a dc electric field will move as periodic oscillations; the so-where (), = 4 sinh(28)sinh3 represents the shape-mode fre-
called “Bloch oscillations” with Bloch frequencyws  quency, andC; (i=1,2,3) are functions ofj(t), respec-

=eaeq. This oscillation frequency is determined by the tively. The corresponding energy, momentum, and norm are
strength of the dc electric field. This is exactly the well-

known result obtained first by Zen¥rAs a generalization of . )
the linear case, this soliton solution is a bounded and periz _ 4 sinff(28) _4 sinff(28)
odic solution, and it is different from that for a continuum sinhg '’ sinhg '

+iQf(1) |, (10

M=83. (11
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Equation(10) is a spatially localized and time periodic rate; the breathefEq. (10)] is not periodic in time. Only
breather solution. This breather is a nonlinear composite exwhen these two frequencies are commensurate with each
citation comprising two-soliton components. It can beother can the breath¢Eq. (10)] become a periodic solution.
viewed as a discrete generalization of two-soliton continuunThis is the resonance issue of a Bloch electron with Coulomb
solutions in the presence of dc-ac electric fields. In the sensateraction.
of an inverse scattering transformation, E§0) can also be If only a dc electric field exists, we can conclude that the
viewed as a breather comprising two single-soliton compoevolution of the discrete breathgeq. (10)] is still periodic
nents with their poles @& #/? ande 2”2, respectively. How- with a period 2r/eaey. However, this breather no longer
ever, this breather will be acted upon by the general discretevolves as a single coherent entity for the discreteness effect.
effect, then break up into two spatially separating coherenlt breaks up into two spatially separating lumps with coher-
structures undergoing bounded individual motions; in addi-ent structures: one with a stable envelope and the other with
tion, it has a continuous translational symmetry on accouna time dependent envelope. Only under the conditiSAs
of the arbitrariness ofi. <1 andt<l/eaey can we separate this discrete breather to

For the case of external electric fields at zero, @) is that of the continuum case. When the paramgt@ncreases,

a discrete breathing soliton solution which has a carrier wavéhese two lumps separate more prominently.

frequency(). and a fundamental shape-mode frequeQigy For the case of an ac electric field, we can easily find that
Its center translates into a parabolic trajectory in time. Simithis breather also breaks up two lumps for a general discrete
lar to that of the continuum case, this breather can be viewedffect. In general, the motion of Bloch electrons with Cou-
as a particle with an internal degree of freedom, and it willlomb interaction in an ac electric field is no longer periodic.
accelerate down a ramp just as a Newtonian particle will do. The final exact results for the wave functigh(t) as a

In general, the two frequenci€y, and(}, are incommensu- three-soliton solution can be written as

1+ CoexgdiQp f() ]+ Caexd iQpof (1) ]+ Cqexdi(Qp,— Qpy) f(1) ]+ Csexd —i(Qp— Qpy) F(1)]
Cet+Crc04 Oy f(1)]+Cgcog Qp,f(t) ]+ Cocog (Qp—Qp) f(1)]

_ C
n(t)=sinh(3B)

Xex;{—inea(edt—k %sin(wat) +iQCf(t)}, (12

where Qp;=2[cosh(®)—coshB] and Q,,=2[cosh(58) these frequencies become commensurate in the continuum

—coshp] represent two shape-mode frequencies, @ndi limit; the evolution of the continuum breather is always pe-
=1,...,9) arefunctions ofg(t), respectively. The corre- riodic in time. This is the resonant situation of Bloch electron
sponding energy, momentum, and norm are with Coulomb interaction.
Equation(12) possesses a continuous translational sym-
4 sintf(3) 4 sinkf(3B) metry, that is,ng is an arbitrary real number, and the corre-
- ~ sinhg - ~ sinhg M=188. (13 sponding energy, momentum, and ndrig. (13)] are inde-

pendent ofh,. The energy, momentum, and norm are simple

Equation(12) can be viewed as a discrete breather whicharithmetic sums of the three single solitons with their poles
evolves with three fundamental frequencies; a carrier wavat e ?, e %, ande™*. We find that Eq(12) is a special
frequency(), and two fundamental shape-mode frequenciekind of bound state with null binding energy and norm.
Qp; and Q. A discrete breather possessing multiple fre-Therefore, it is marginally stable and may decay into three-
quencies is conceptually important in studies of nonlineasoliton components under perturbation. Moreover, as a more
lattice systems. In the sense of an inverse scattering transfagignificant property of the solution, E¢L2) is stable after a
mation, Eq.(12) can also be viewed as a breather comprisingcollision with a soliton.
three single-soliton components with their poles eat®, When the external electric field is at zero, Ef?2) is a
e 38 and e ", respectively. Generally, these two shape-discrete breathing soliton solution which has a carrier wave
mode frequencie$),; and(),, are incommensurate; there- frequency(). and two fundamental shape-mode frequencies
fore, the envelope of the breather does not have a temporalf,; andQ,. Its center translates in a parabolic trajectory in
periodic evolution, and this nonlinear excitation cannot betime. Similar to the continuum case, this breather can be
decomposed into three periodic components. This is an exdewed as a particle with an internal degree of freedom, and
ample of a spatially localized, temporally quasiperiodic, non-t will accelerate down a ramp just as a Newtonian particle
linear breathing structure. The incommensurability of thewill do. In general, the two shape-mode frequendiksand
breather frequencies is a discrete lattice effect. When thre@, are incommensurate; this breather is not periodic in time.
fundamental frequencies satisfying some special relationdVhen these two shape-mode frequencies become commen-
for example,Q:Qp1:Qpp=1:8:24 in thelimit of 8—0,  surate, this breather is always a periodic solution. This is the
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resonance issue of a Bloch electron under the action of theral, any two frequencieQ_,y and {); are incommensu-
nonlinear effect. rate, this breather is not periodic in time. When any two

If only a dc electric field exists, this breather no longerfrequencies become commensurate, this breather is always a
evolves as a single coherent entity for the discreteness effegieriodic solution. This is the resonance issue of Bloch elec-
It breaks up into three spatially separating lumps with cohertrons with Coulomb interaction.
ent structures, one with a stable envelope and the other with Equation(14) is a nonlinear composite excitation com-
a time-dependent envelope. When the paramegiecreases, prising N soliton components. It can be viewed as a discrete
these two lumps separate more prominently. Only under thgeneralization oN soliton continuum solutions in the pres-
conditions B2<1 andt<1l/eaey can we recover the con- ence of dc-ac electric fields. In the sense of an inverse scat-
tinuum solution from this discrete breather under the actiortering transformation, Eq(14) can also be viewed as a
of a dc electric field. Of course, the evolution of the discretebreather comprisingyl soliton components with their poles at
breather is still periodic with a period@eae, . e Bl @732 etl0=DER =12 ...,N-1)],

When only an ac electric field exists, we can easily findrespectively. However, this breather will be acted upon by
that this breather also breaks up three lumps for a generghe general discrete effect, and will then break up iNto
discrete effect. In general, the motion of Bloch electrons withspatially separating coherent structures undergoing bounded
Coulomb interaction in an ac electric field is no longer peri-individual motions; in addition it has a continuous transla-
odic. tional symmetry on account of the arbitrarinessgf

The N soliton solutionsi,,(t) can be written as For a clear and better understanding on the dynamics of
Bloch electrons, the properties associated with the effects of
. . the ac and dc electric fields could be summarized as the
sinh(NB) ;1 Ciexfli (Qp-1)= Qug-2)) F(1)] follows: Bloch electron: dc fields, ac fields, dc-ac fields. Mo-

2N-1

Ya(t)= e tion of electron: localized-localized-localized. Staggered
. n ;
Cocos (D e O V(1 states: noy,—(—1)"¢, and ¢,—(—1)"¢,,. Oscillatory
mzzl m €03 (Lom-1)~ Lom-2) T (V)] frequency:wg=eaey and w,=eaey+2Mw, .

In conclusion, the dynamics of Bloch electrons with Cou-
: lomb interaction on a discrete lattice in dc-ac electric fields
+iQ ()], . . :
has many interesting features, which were beyond the reach
(14) of the linear limit and the continuum limit. In the sense of an
inverse scattering transformation, these breathers are bona
where Q= 2{cosH(2+1)B]—-coshg} represents theth  fide soliton solutions. They are actually discrete generaliza-
shape-mode frequency. The corresponding energy, momefions of the continuum multiple-soliton solutions. These

€
Xexr{ —inea( eqt+ —asin(wat)
(OF}

tum, and norm are breathers, with incommensurate internal breathing frequen-
. . cies, exist only in the discrete lattice. They approach time

- _ W P= M M =2N23 periodic solutions in the continuum limit. They are important
sinhg sinhg ' ' for an understanding of spatially localized nonlinear excita-

(15 tions in certain classical and quantum systems.
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