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Intrinsic localized states and nonlinear excitations of Bloch electrons in electric fields
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Bloch electrons with Coulomb interaction will take localized motion on a discrete lattice in the electric
fields. They are always oscillatory in time, with oscillatory frequencies determined by electric fields. Their
nonlinear excitations are the spatially localized and time periodic or quasiperiodic, and possess multiple
frequencies and comprise multiple soliton components.
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This paper addresses the dynamics of Bloch electr
with Coulomb interaction on a discrete lattice in the elect
fields. The analysis is based on exact calculations with
inverse scattering method. The results are interesting,
include intrinsic localized states and nonlinear excitations
Bloch electrons. Such a system can be written as an exte
Hubbard model,1 which is relevant to a variety of fields
including exciton states in molecular crystals,2 oscillations of
the sequential tunneling in superlattices,3 electron excitations
in polaronic contexts,4 and the localized properties of exc
tations in ferroelectric materials.5

The Hamiltonian of the extended Hubbard model is th

H52V(
n

@cn~ t !cn11* ~ t !1cn* ~ t !cn11~ t !#

1(
n

nea@ed1eacos~vat !#ucn~ t !u2

2U(
n

@ ucn21~ t !u21ucn11~ t !u2#ucn~ t !u2, ~1!

with the anticommutation relation$cn ,cm%5$cn* ,cm* %50,
$cn ,cm* %5dnm , whereucn(t)u2 is proportional to the elec
tron density at siten and timet, V is the nearest-neighbo
intersite overlap integral,e is the electron charge,a is the
lattice constant,U is the Coulomb interaction between tw
electrons,ed and ea are dc and ac electric fields, andva is
the frequency of the ac electric field, respectively. Usua
this model is applied to tightly bound orbitals. ThenU is
quite large, perhaps 10 eV. The bandwidthV is sometimes
taken to be smaller. However, some of the most interes
phenomena seem to occur forU'V. For simplicity, we can
chooseU5V51. If we neglect the nonlinearity, the syste
will reduce to a linear limit; the electron statecn(t) can be
expressed as a linear combination of Wannier states.6 The
discreteness of the system gives rise to some interesting
tures which are not present in the continuum limit.

There has been tremendous progress in the past 30 y
in developing analytical methods, such as the inverse sca
ing method,7 for finding exact solutions of one-dimension
nonlinear discrete systems.8 The basic idea of the invers
scattering method is to transform a nonlinear problem int
linear scattering problem. According to the inverse scatter
0163-1829/2001/65~3!/033102~4!/$20.00 65 0331
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method, the exact single-soliton solution of the extend
Hubbard model@Eq. ~1!# can be written as

cn~ t !5sinhb sech@bn12 sinhbg~ t !2bn0#

3expF2 ineaS edt1
ea

va
sin~vat ! D1 iVcf ~ t !G , ~2!

whereVc52 coshb is the carrier-wave frequency, andb is a
constant, while

f ~ t !5A1B1C1 (
m51

`

J2mS eaea

va
D H sin@~eaed12mva!t#

eaed12mva

1
sin$@eaed22mva#t%

eaed22mva
J 1 (

m50

`

J2m11S eaea

va
D

3H sin@~eaed1~2m11!va!t#

eaed1~2m11!va

2
sin@~eaed2~2m11!va!t#

eaed2~2m11!va
J ~3!

and

g~ t !5J0S eaea

va
D 12cos~eaedt !

eaed

1 (
m51

`

J2mS eaea

va
D H 12cos@~eaed12mva!t#

eaed12mva

1
12cos$@eaed22mva#t%
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where
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5” 0,

~5!
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B5H J2mS eaea

va
D t if

eaed

va
562m

0 if
eaed

va
5” 62m,

~6!

C5H 7J2m11S eaea

va
D t if

eaed

va
56~2m11!

0 if
eaed

va
5” 6~2m11!,

~7!

and Jm(eaea /va) (m50,61, . . . ) areBessel functions of
the first kind, respectively. The corresponding energy, m
mentum, and norm are

E524 sinhb, P54 sinhb, M52b. ~8!

Equation ~2! represents precisely the intrinsic localize
state of Bloch electrons on a discrete lattice. The envelop
this soliton is always a hyperbolic secant, and it is the sa
as that of the continuum case, but the motion of its cente
different from the continuum case.9 When the external elec
tric fields are zero, we find that, in contrast to the diffusi
motion of Bloch electrons for the potential-free case in
linear limit,6 Bloch electrons will take localized motion un
der the action of nonlinear Coulomb interactionU. These are
the intrinsic localized states.

We can readily show that this single-soliton solution ha
continuous translational symmetry on account of the a
trariness ofn0. If we omitted the nonlinear strengthU, the
equation of motion of Bloch electrons is invariant under t
following transformations: ifcn→(21)ncn , t→2t for the
potential-free case or the electric field as any odd function
time, there exist ‘‘staggered’’ localized states. In this ca
the system possesses the following reflectional symmetr
an unstaggered statecneivat is a solution of the system, the
the staggered state (21)ncneivat is also a solution of the
system. Under reflectional transformation, the single-soli
solution@Eq. ~2!# transforms to a set of solutions identical
the original set in Eq.~2!, but with a different parametriza
tion. It follows that this single-soliton solution possesses
exact self-dual reflectional symmetry.

As a generalization of the well-known linear case,6 the
single-soliton solution@Eq. ~2!# is always oscillatory in time
and bounded, i.e., the oscillatory of Bloch electrons w
Coulomb interaction in dc-ac electric fields is periodic, wh
the oscillatory frequencies are determined by the coupling
the magnitudeed of the dc electric field and the frequenc
va of the ac electric field.10

For the case of a dc electric field, it can be readily se
that the single-soliton solution@Eq. ~2!# oscillates in time.
This means that Bloch electrons with Coulomb interaction
a dc electric field will move as periodic oscillations; the s
called ‘‘Bloch oscillations’’ with Bloch frequencyvB
5eaed . This oscillation frequency is determined by th
strength of the dc electric field. This is exactly the we
known result obtained first by Zener.11 As a generalization of
the linear case, this soliton solution is a bounded and p
odic solution, and it is different from that for a continuu
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case. It is concluded that in the limit of a dc electric field, t
system exhibits a periodic evolution which is a nonline
counterpart of Bloch oscillations.12 This nonlinear Bloch os-
cillation has been found in experiments of wavegui
arrays.13

If an ac electric field alone exists, we can easily find th
the single-soliton solution@Eq. ~2!# oscillates with the period
T52p/va in time and remains bounded, and its oscillato
period is the same with that of an ac electric field. Th
means that Bloch electrons are effectively localized by
action of an ac electric field. If Bloch electrons are initial
localized in space, they can be dynamically trapped by an
electric field.

As a measure of localization, we can introduce the me
width W of a pulse,

W5S (
n52`

`

n2ucn~ t !u2

(
n52`

`

ucn~ t !u2
D 1/2

, ~9!

where the pulse center is assumed to be at a siten50. Thus
for a complete localization of the energy at the center siteW
becomes zero. The oscillations ofW are p/2 out of plane,
due to norm conservation. We can find the time evolution
the mean width of a pulse exhibiting a localization of Blo
electrons with Coulomb interaction in dc-ac electric field
The mean widthW of a pulse is oscillatory, and a monoton
cal decrease does not exist as time changes. This is diffe
from the initial phase of a blowup in the continuum syste
We note again that the mean width of the pulse never reac
zero.

Summing up the previous discussions, we should emp
size the differences between the ac and dc-ac cases fo
trinsic localized states and oscillations. In the ac case
oscillation period is the same as that of an ac electric fie
However, in the dc-ac case the situation is quite differe
Oscillation frequencies are determined by a coupling of
magnitudeed of a dc electric field and the frequencyva of
an ac electric field. They have nothing to do with the ma
nitudeea of an ac electric field. We believe such a charac
may be related to Wannier-Stark ladders,14 because of the
effect of a dc field.

The two-soliton solutionscn(t) can be written as

cn~ t !5
sinh~2b!@C11C2 exp~ iVbf ~ t !!#

C31~Vc
221!cos@Vbf ~ t !#

expF2 ineaS edt

1
ea

va
sin~vat ! D1 iVcf ~ t !G , ~10!

whereVb54 sinh(2b)sinhb represents the shape-mode fr
quency, andCi ( i 51,2,3) are functions ofg(t), respec-
tively. The corresponding energy, momentum, and norm

E52
4 sinh2~2b!

sinhb
, P5

4 sinh2~2b!

sinhb
, M58b. ~11!
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Equation ~10! is a spatially localized and time period
breather solution. This breather is a nonlinear composite
citation comprising two-soliton components. It can
viewed as a discrete generalization of two-soliton continu
solutions in the presence of dc-ac electric fields. In the se
of an inverse scattering transformation, Eq.~10! can also be
viewed as a breather comprising two single-soliton com
nents with their poles ate2b/2 ande23b/2, respectively. How-
ever, this breather will be acted upon by the general disc
effect, then break up into two spatially separating coher
structures undergoing bounded individual motions; in ad
tion, it has a continuous translational symmetry on acco
of the arbitrariness ofn0.

For the case of external electric fields at zero, Eq.~10! is
a discrete breathing soliton solution which has a carrier w
frequencyVc and a fundamental shape-mode frequencyVb .
Its center translates into a parabolic trajectory in time. Si
lar to that of the continuum case, this breather can be vie
as a particle with an internal degree of freedom, and it w
accelerate down a ramp just as a Newtonian particle will
In general, the two frequenciesVc andVb are incommensu-
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rate; the breather@Eq. ~10!# is not periodic in time. Only
when these two frequencies are commensurate with e
other can the breather@Eq. ~10!# become a periodic solution
This is the resonance issue of a Bloch electron with Coulo
interaction.

If only a dc electric field exists, we can conclude that t
evolution of the discrete breather@Eq. ~10!# is still periodic
with a period 2p/eaed . However, this breather no longe
evolves as a single coherent entity for the discreteness ef
It breaks up into two spatially separating lumps with coh
ent structures: one with a stable envelope and the other
a time dependent envelope. Only under the conditionsb2

!1 andt!1/eaed can we separate this discrete breather
that of the continuum case. When the parameterb increases,
these two lumps separate more prominently.

For the case of an ac electric field, we can easily find t
this breather also breaks up two lumps for a general disc
effect. In general, the motion of Bloch electrons with Co
lomb interaction in an ac electric field is no longer period

The final exact results for the wave functioncn(t) as a
three-soliton solution can be written as
cn~ t !5sinh~3b!
C11C2 exp@ iVb1f ~ t !#1C3 exp@ iVb2f ~ t !#1C4 exp@ i ~Vb22Vb1! f ~ t !#1C5 exp@2 i ~Vb22Vb1! f ~ t !#

C61C7 cos@Vb1f ~ t !#1C8 cos@Vb2f ~ t !#1C9 cos@~Vb22Vb1! f ~ t !#

3expF2 ineaS edt1
ea

va
sin~vat ! D1 iVcf ~ t !G , ~12!
uum
e-
on

m-
e-

le
les

.
ee-
ore

ve
ies
in
be
nd

cle

e.
en-

the
where Vb152@cosh(3b)2coshb# and Vb252@cosh(5b)
2coshb# represent two shape-mode frequencies, andCi ( i
51, . . . ,9) arefunctions of g(t), respectively. The corre
sponding energy, momentum, and norm are

E52
4 sinh2~3b!

sinhb
, P5

4 sinh2~3b!

sinhb
, M518b. ~13!

Equation~12! can be viewed as a discrete breather wh
evolves with three fundamental frequencies; a carrier w
frequencyVc and two fundamental shape-mode frequenc
Vb1 and Vb2. A discrete breather possessing multiple fr
quencies is conceptually important in studies of nonlin
lattice systems. In the sense of an inverse scattering tran
mation, Eq.~12! can also be viewed as a breather compris
three single-soliton components with their poles ate2b,
e23b, and e25b, respectively. Generally, these two shap
mode frequenciesVb1 andVb2 are incommensurate; there
fore, the envelope of the breather does not have a tempo
periodic evolution, and this nonlinear excitation cannot
decomposed into three periodic components. This is an
ample of a spatially localized, temporally quasiperiodic, no
linear breathing structure. The incommensurability of t
breather frequencies is a discrete lattice effect. When th
fundamental frequencies satisfying some special relatio
for example,Vc :Vb1 :Vb251:8:24 in thelimit of b→0,
h
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these frequencies become commensurate in the contin
limit; the evolution of the continuum breather is always p
riodic in time. This is the resonant situation of Bloch electr
with Coulomb interaction.

Equation~12! possesses a continuous translational sy
metry, that is,n0 is an arbitrary real number, and the corr
sponding energy, momentum, and norm@Eq. ~13!# are inde-
pendent ofn0. The energy, momentum, and norm are simp
arithmetic sums of the three single solitons with their po
at e2b, e23b, ande25b. We find that Eq.~12! is a special
kind of bound state with null binding energy and norm
Therefore, it is marginally stable and may decay into thr
soliton components under perturbation. Moreover, as a m
significant property of the solution, Eq.~12! is stable after a
collision with a soliton.

When the external electric field is at zero, Eq.~12! is a
discrete breathing soliton solution which has a carrier wa
frequencyVc and two fundamental shape-mode frequenc
Vb1 andVb2. Its center translates in a parabolic trajectory
time. Similar to the continuum case, this breather can
viewed as a particle with an internal degree of freedom, a
it will accelerate down a ramp just as a Newtonian parti
will do. In general, the two shape-mode frequenciesVc and
Vb are incommensurate; this breather is not periodic in tim
When these two shape-mode frequencies become comm
surate, this breather is always a periodic solution. This is
2-3
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resonance issue of a Bloch electron under the action of
nonlinear effect.

If only a dc electric field exists, this breather no long
evolves as a single coherent entity for the discreteness ef
It breaks up into three spatially separating lumps with coh
ent structures, one with a stable envelope and the other
a time-dependent envelope. When the parameterb increases,
these two lumps separate more prominently. Only under
conditionsb2!1 and t!1/eaed can we recover the con
tinuum solution from this discrete breather under the act
of a dc electric field. Of course, the evolution of the discr
breather is still periodic with a period 2p/eaed .

When only an ac electric field exists, we can easily fi
that this breather also breaks up three lumps for a gen
discrete effect. In general, the motion of Bloch electrons w
Coulomb interaction in an ac electric field is no longer pe
odic.

The N soliton solutionscn(t) can be written as

cn~ t !5

sinh~Nb! (
l 51

2N21

Cl exp@ i ~Vb( l 21)2Vb( l 22)! f ~ t !#

(
m51

2N22

Cm cos@~Vb(m21)2Vb(m22)! f ~ t !#

3expF2 ineaS edt1
ea

va
sin~vat ! D1 iVcf ~ t !G ,

~14!

where Vbl52$cosh@(2l11)b#2coshb% represents thel th
shape-mode frequency. The corresponding energy, mom
tum, and norm are

E52
4 sinh2~Nb!

sinhb
, P5

4 sinh2~Nb!

sinhb
, M52N2b.

~15!

Equation ~14! is a discrete breathing soliton solutio
which has a carrier wave frequencyVc andN21 fundamen-
tal shape-mode frequenciesVbl ( l 51,2, . . . ,N21). In gen-
M
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eral, any two frequenciesV ( l 21) and V l are incommensu-
rate, this breather is not periodic in time. When any tw
frequencies become commensurate, this breather is alwa
periodic solution. This is the resonance issue of Bloch el
trons with Coulomb interaction.

Equation ~14! is a nonlinear composite excitation com
prising N soliton components. It can be viewed as a discr
generalization ofN soliton continuum solutions in the pres
ence of dc-ac electric fields. In the sense of an inverse s
tering transformation, Eq.~14! can also be viewed as
breather comprisingN soliton components with their poles a
e2b/2, e23b/2, . . . ,e2[( l 21)b/2], . . . ,@ l 51,2, . . . ,(N21)#,
respectively. However, this breather will be acted upon
the general discrete effect, and will then break up intoN
spatially separating coherent structures undergoing boun
individual motions; in addition it has a continuous trans
tional symmetry on account of the arbitrariness ofn0.

For a clear and better understanding on the dynamic
Bloch electrons, the properties associated with the effect
the ac and dc electric fields could be summarized as
follows: Bloch electron: dc fields, ac fields, dc-ac fields. M
tion of electron: localized-localized-localized. Stagger
states: nocn→(21)ncn and cn→(21)ncn . Oscillatory
frequency:vB5eaed andva5eaed12mva .

In conclusion, the dynamics of Bloch electrons with Co
lomb interaction on a discrete lattice in dc-ac electric fie
has many interesting features, which were beyond the re
of the linear limit and the continuum limit. In the sense of
inverse scattering transformation, these breathers are b
fide soliton solutions. They are actually discrete generali
tions of the continuum multiple-soliton solutions. The
breathers, with incommensurate internal breathing frequ
cies, exist only in the discrete lattice. They approach ti
periodic solutions in the continuum limit. They are importa
for an understanding of spatially localized nonlinear exci
tions in certain classical and quantum systems.
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