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We present a general formula of the orbital magnetization of disordered systems based on the Keldysh Green’s
function theory in the gauge-covariant Wigner space. In our approach, the gauge invariance of physical quantities
is ensured from the very beginning, and the vertex corrections are easily included. Our formula applies not only
for insulators but also for metallic systems where the quasiparticle behavior is usually strongly modified by
the disorder scattering. In the absence of disorders, our formula recovers the previous results obtained from the
semiclassical theory and the perturbation theory. As an application, we calculate the orbital magnetization of a
weakly disordered two-dimensional electron gas with Rashba spin-orbit coupling. We find that for the short-range
disorder scattering, its major effect is to the shifting of the distribution of orbital magnetization corresponding to

the quasiparticle energy renormalization.
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I. INTRODUCTION

Magnetization is one of the most important and intriguing
material properties. An adequate account of magnetization
should not only include the contribution from the spin
polarization of electrons, but also the contribution from the
orbital motion of electrons. In crystals, due to the reduced
spatial symmetry, the orbital contribution to the magnetization
is usually quenched. For example, it is only of the order of a few
percent of the total magnetization in Fe, Co, and Ni.! However,
that is not to say that the orbital magnetization is small in
all materials. In certain materials with topologically nontrivial
band structures, large contributions can arise from the effective
reciprocal space monopoles near the band anticrossings. The
orbital magnetization can have a more important effect, cancel,
and even is larger than the spin magnetization, which has
been confirmed in recent experiments.>> Furthermore, the
orbital magnetization is directly connected to many important
applications and it also determines several important material
properties. Some examples include the NMR,*¢ the EPR’
shielding tensors, the magnetic susceptibility,® the orbital
magnetoelectric coupling and response,'®!* and the Hall
conductivity."* All these highlight the need to develop a
complete description of the orbital magnetism in solids.

Several different methods have been employed to study
the orbital magnetization (OM) in crystals.'>*?> One major
difficulty in the calculation is posed by the evaluation of the
operator'>'® # x . because the the position 7 is ill defined in
the Bloch representation. This difficulty can be avoided in a
semiclassical approach or be circumvented by a transformation
to the Wannier representation. Xiao et al.'®!® presented a
general formula for OM for metal and insulator, derived from
a semiclassical formalism with the Berry-phase corrections.
Thonhauser et al.’>*' derived an expression of the OM for
periodic insulators using the Wannier representation. From the
elementary thermodynamics, Shi et al.”* obtained a formula
for the OM in a periodic system using the standard perturbation
theory, and their result can in principle take into account
the electron-electron interaction effects. The OM for periodic
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systems with first principles were studied by Lopez et al.”

and Ceresoli et al.?

Previous studies are mainly concerned with clean crystal
systems. However, real crystals are never perfect; disorders
such as defects, impurities, phonons, etc. constantly break
the translational symmetry and lead to scattering events. The
effect of disorder scattering on the OM has not been carefully
studied so far. On one hand, the OM is a thermodynamic
quantity, hence it is expected to be less susceptible to disorder
scattering. On the other hand, the appearance of current
operator j in the definition suggests behaviors similar to
transport quantities, which might be strongly affected by the
disorder scattering. Therefore, it is important and desirable to
have a good understanding of the role played by the disorder
scattering in the OM.

In this paper, we present a general formula of the OM in
disordered systems based on the Keldysh-Green’s function
formalism in the gauge-covariant Wigner space.’*® This
approach was developed as a systematic approach to the
nonequilibrium electron dynamics under external fields. Our
formula derived from this approach shares the advantage of
being able to capture the disorder effects in a systematic
way and ensure the gauge invariance property from the very
beginning. We show that in the clean limit, our formula reduces
to the previous results obtained from other approaches. As an
application, we study the OM in a disordered two-dimensional
(2D) electron gas with the Rashba spin-orbit coupling. We find
that the OM is robust against short-range disorders. The main
effect of the scattering by short-range disorders is a rigid shift
of the distribution of OM in energy.

The structure of this paper is organized as follows. In
Sec. IT A, we outline the Keldysh-Green’s function formalism,
which is employed for our derivation. Our general formula
of OM is presented in Sec. IIB. In Sec. III, we apply the
formula to study the OM of a two-dimensional disordered
electron gas with the Rashba spin-orbit coupling. Summary
and conclusion are given in Sec. IV. Some details of the
calculation are provided in the Appendices.

©2012 American Physical Society
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II. ORBITAL MAGNETIZATION OF DISORDERED
SYSTEMS

A. Keldysh-Green’s function formalism

We employ the Keldysh-Green’s function formalism in
the Wigner representation,* which has recently been used
to study the current response of multiband systems under
an electric field.’**> In the Wigner representation, Green’s
functions and the self-energies are expressed as functions of
the center-of-mass coordinates (7,X), the energy ¢ and the
mechanical momentum p. The energy and the mechanical
momentum are the Fourier transforms of the relative time and
space coordinates respectively.

The Dyson equations in the presence of external electro-
magnetic fields can be written as

[el — Hy(p) — Z(e)] x G(e,p) =
G(e,p) »[ef — Hy(p) — (o))

, (Ta)
. (1b)

Each quantity with an underline in the above equations is a
matrix in Keldysh space. Specifically, we have

6 GR 26~ & _ LR2%< &
— \o G ) = \o 24 )

Hy 0 6% 0
= ). L= 0 | 3)
0 H() 06

where G(R-4-<) are the (retarded, advanced, lesser) Green’s
functions, and ®4-<) are the corresponding self-energies, Hy
is the Hamiltonian in the absence of external electromagnetic
fields, 6 is the identity matrix. The » operator in Eq. (1) is
defined as

=
I~

iqgh ~— - ~— =

* = exp I:TFMV( 3 pH 8 P’ 8 P’ 3 pu)] ) (4)

with the differential operators <8_ and _8) operating on the
left-hand and the right-hand sides respectively, g = —|e| is
the electron charge, and F"" = dx, A"(X) — dx, A*(X) is
the electromagnetic field tensor, n and v label the four-
dimensional space-time components and the Einstein summa-
tion convention is assumed. It should be noted that the energy ¢
and the mechanical momentum p include the electromagnetic
potentials A*(X), both are gauge invariant quantities. The
operator in Eq. (1) only involves the physical fields, so it is
also gauge invariant. In this formalism the gauge invariance
is respected from the very beginning and easily maintained
during the perturbative expansion, which is an important
advantage.*?

Here we consider the situation with a uniform weak
magnetic field along the z direction, [i.e., B = (0,0, B)]. Then
the various quantities can be expanded in terms of B. In
particular, Green’s functions and the self-energies can be
expressed as

G%(e,p) = G&(e.p) + ehBG%(e.p) + O(BY),  (5)
$9(e) = $¢(e) + eh B4 (e) + O(B), (©6)

with « = R,A, < for the retarded, advanced, and lesser
components respectively. Here functions with the subscript
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0 are of zeroth order in the external magnetic field strength
(note that they include scattering effects). We have

GED(e,p) = [¢ — Hop) — £8P @)] ", )

Gi(e.p) = [Gf(e.p) — GR(e.m] f (o), (8)

where f(e) is the Fermi distribution. The functions with
subscript B are the linear response coefficient to the external
field. They can be solved from the Dyson equation. It is usually
convenient to decompose the lesser component G 5 and f)g
(which are related to particle distribution) into two parts, with
one part from the Fermi surface and the other part from the
Fermi sea,’®

Gye.p) =G5 (e.p)d. f(e) + G5 (e f€)  (9)

£5) =S5, f(&)+ 5 () f(e).  (10)

From the Dyson equation (kept to the linear order in B), it is
straightforward to show that

Gy, =35,=0, (11)

(i.e., there is no Fermi surface term in the linear order lesser
component) and for the Fermi sea term we have

G 11(e.p) = Ga(e.p) — GR(e.p). (12)

25 =25 — £Re). (13)

The retarded and advanced Green’s function Gg(A) and

self-energy f)g(A) are determined from the following self-
consistent equations:

AR(A) U AR(A) & AR(A) ARAN ~ AR(A)
Gg™ = E[Go Ux (81,)‘ Gy ) - (8p,vG0 )UxGo ]
AR(A) & R(A) AR(A)
+ GRS RO GRA) (14)

where the velocity operator is defined as 0; = %[ﬁi,lfl ].

In this approach, the disorder effects are captured by
the self-energies fl(f ) and f)g(A), which allows a system-
atic perturbative treatment. In the weak disorder regime,
the self-consistent 7-matrix approximation provides a good
approximation scheme. In this approximation, we have

S8 E) = nimp Ty o), (15)

and
&R(A), N A R(A) d’p . R(A) A R(A)
2 () = nimply () WGB (e,p)T, V(e), (16)

where niy, is the impurity concentration and the 7 -matrix is
expressed as

A i & . o\
TED () = Vi (1 - / ﬁc{f“’@,p)wmg . an

with Vimp being the impurity potential.

The equilibrium Green’s functions G{f @ and the self-
energies f)g “ ¢can be obtained by solving Egs. (7), (15) and
(17) self-consistently. Then the linear order coefficients Gg(A)
and 2{;“‘) can be solved from Egs. (14) and (16). Finally, we
can obtain CA}E’ ;; through Eq. (12) and the linear response of
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the system in the external magnetic field can be completely
determined.

The lesser Green’s function contains the information of
particle distribution. In our case, both the external magnetic
field and the disorder scattering affect the quasiparticle distri-
bution. Before we proceed, it is interesting to observe how the
nontrivial band geometry (described by the Berry curvature)
can be captured by the present Wigner space Green’s function
formalism. For a homogeneous system, the electron density
can be written as

/ - h)2t A6 Pl (18)

In the absence of the disorder scattering, the eigenstates are
well-defined Bloch states grouped into energy bands. Using the
theorem of residues, we can express the ground-state electron
density in the presence of a constant magnetic field as (see

Appendix C)
B Z / <2nh>2

The summation is over all the occupied states, and €2,,(p) =
i{(Vputyp| X [Vpu,p) is the Berry curvature of the Bloch state
[n,p) = ePX/" [unp). It can be seen that the Fermi-sea volume is
changed linearly by a magnetic field when the Berry curvature
is nonzero. This effect was previously interpreted as the
modification of the phase space density of states.'®

@] a9

B. Formula of orbital magnetization

We start from the standard thermodynamic definition of the
OM density at zero temperature,”*

M = oK 20
- - (ﬁ)u > ( )

where K = E — uN is the grand thermodynamic potential,
B is a weak magnetic field. Since we are concerned with the
orbital contribution, the small Zeeman coupling between the
electron spin and external field will be dropped. The potential
K can be expressed through the lesser Green’s function,

=[5 (2nh)2t H - wG=Epl @)

Using Egs. (20), (21), and (9), we find that the OM can be

written as
M = —ieh / /(2 h)2tr[(H 7))

x (G4(e.p) — Go(e.m)]f (o). (22)

From this expression, we can see that the OM has contributions
from the whole Fermi sea, with no separate Fermi surface
contribution such as that for the transport quantities.

In this formula, the impurity scattering effect comes in
through two terms: the self-energy f)g 4. which modifies the
ground-state electronic structure and the vertex corrections
associated with ER A< which represent an interplay between
the magnetic field and the impurity scattering. We may separate
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out the terms containing ER 4= and write the OM explicitly
as
M=M +M", (23)
where
M =
e / .
x ZTr €i(H — 11)G i (e,p)0; G (e,p)0; Gi(e,p)
ij

—(G§ - G, (24)

and

__’eh/ fee )/(m)z

x Tr[(H — Gy S3Gy — (H — wGEEEGE],
(25)

where ¢;; with i,j € {x,y} is the 2D antisymmetric tensor,
and the second term in the bracket in Eq. (24) means that the
second term is the same as the first term except that all the
G{)‘ are replaced by G{f. Such a decomposition scheme was
also adopted in the study of anomalous Hall conductivity,
and in that context, the two parts are referred to as the intrinsic
part and extrinsic part respectively. It should be noted that
the intrinsic part M’ also has impurity scattering effects in it
[see Eq. (7) and Eq. (15)], it is intrinsic in the sense that it
only contains quantities that are of zeroth order in the external
field. As for the extrinsic part M/, it is easy to see that it is
already linear order in njy, [see Eq. (16)]. Therefore in the
weak scattering regime, the extrinsic part is expected to be
much smaller than the intrinsic part.

The above formula is our main result. From this formula,
we see that there is no separate Fermi surface contributions like
those in the transport quantities, which is consistent with OM
being a thermodynamic equilibrium property. This formula
applies for both insulators and metals. The quantities in this
formula can be calculated from the Dyson equation according
to our prescription described in the previous section. It can
also be straightforwardly implemented in the numerical calcu-
lation, either from effective models or from first principles.

In the clean limit, we only have the intrinsic part. The
general result reduces to (see Appendix D for the derivation)

M= fu [mn@) — e - u)sz,xp)}, (26)

np

where m,(p)=(e/2h)i(Vyunp|l€,(p) — Ho(p)] X |Vpityp) is
the orbital moment of the Bloch state |n,p) and €2,(p)=
i(Vplup| X [Vput,p) is the Berry curvature. The first term in
Eq. (26) is a sum of the orbital magnetic moments associated
with each Bloch state,***! and the second term is a Berry-phase
correction to the OM. Therefore, the OM can be written as

M = My + Maq,. 27)

This clean limit result was previously derived from the
standard perturbation theory of quantum mechanics by Shi
et al.** and also from the semiclassical theory by Xiao et al.'®
Now it is also reproduced as a special limiting case of our

general formula.
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III. APPLICATION TO A TWO-DIMENSIONAL
ELECTRON GAS WITH RASHBA SPIN-ORBIT
COUPLING

A. Model

In this section, we apply our theory to study the orbital
magnetization of a two-dimensional electron gas with Rashba
spin-orbiting coupling. The Rashba model was proposed
in 1960.*> It has a great success in describing the two-
dimensional electron gas confined at the semiconductor
heterostructures, which was a primary playground of the
spintronics research in the past two decades, such as spin
Hall effect,¥> anomalous Hall effect,>3¢ and topological
phase of Rashba superconductor.***> The Rashba spin-orbit
interaction is realized in an InGaAs/GaAs heterostructure. The
Hamiltonian for the model reads

H = I:IO + I:Iimp» (283)
2
Hy = ;;&0 +alpe6? — py6) — Agsc,  (28b)
m
I:Iimp = "timpa'O Z 8(’7 - 7imp)a (28C)
Fimp

where (6%,67,6%) are the three Pauli matrices and 6° is
the identity matrix, o is the strength of the spin-orbit
coupling, and term —Ay6° is the Zeeman splitting, which
can be introduced by the exchange coupling with a nearby
ferromagnet or magnetic dopants. These two terms both lift
the spin degeneracy, but have different time-reversal symmetry
properties. The spin-orbit coupling term is even under time
reversal while the Zeeman term is odd. I-AIimp is the disorder
potential from the randomly distributed short-range impurities
with strength uinp. The energy dispersion of the Hamiltonian

Hy is given by

2
E;(p) = z"—m — (= A2 +a2p?, (29)

where A = 1,2 labels the upper and lower band respectively.

The interplay between spin-orbit interaction and Zee-
man splitting can influence the transport property of two-
dimensional electron gas.*® Experimentally, the strength of
Rashba coupling can be tuned by controlling the gate
voltage,*’*® as successfully demonstrated in the system of
InGaAs/GaAs or LaAlO3/SrTiO3 heterostructures.*” For our
model, the minima of the lower band occur at a finite wave
vector and the dispersion assumes a Mexican hat shape [see
Fig. 1(a)] when the Rashba coupling energy scale’® ma? is
larger than the Zeeman coupling strength. When the Zeeman
coupling dominates over the Rashba energy, the minimum of
the lower band E, occurs at the origin [see Fig. 2(a)] .

Let us first consider the clean limit, in which case the orbital
magnetic moment and the Berry curvature of each Bloch state
can be calculated straightforwardly,

() = ma(p) = = B0 (30)
m =m = —
1 P 2 p Zh A(z) + (X2p2’
1 AQO[2
Q(p) = —a(p) = — a1

2 (A2 3

(A3 + a2 p?)?
It is interesting to observe that for the same wave vector the
orbital moments of the two bands have the same magnitude
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FIG. 1. (Color online) (a) Electronic band dispersions of our
model given by Eq. (29). (b) Orbital magnetization (M, solid red
curve) of disordered free system and its two components M, (dashed
blue curve) and Mg, (dash-dotted green curve) as functions of Fermi
energy Ep. They are plotted in units of e/fi. The parameters are
chosen as 2ma? = 3.59 and Ay = 0.1.

and the same sign, while the Berry curvatures have the same
magnitude but opposite signs. It should also be noted that both
the orbital moment and the Berry curvature would vanish if
either o or A vanishes. From Eq. (26), we further see that the
OM is nonzero only when both the spin-orbit coupling and the
exchange coupling are present.
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FIG. 2. (Color online) (a) Electronic band dispersions of our
model given by Eq. (29). (b) Orbital magnetization (M, solid red
curve) of disorder free system and its two components M,, (dashed
blue curve) and Mg, (dash-dotted green curve) as functions of Fermi
energy Ep. They are plotted in units of e/fi. The parameters are
chosen as 2ma? = 0.08 and Ag = 0.1.
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Analytical expressions of the OM can be easily obtained
for the clean limit using Eq. (26). For example, for the case
with Er > Ap, we have

=80 (g, 4 A0
T 47n\ " 2ma

1 1

X - .
Eiran)| (@3+et)’
eA i .
8nm7?oa2 [(Aé + Oﬂp%])z - (A% + O‘ZP%Z)Z]’ (32)

where pr, , is the Fermi momenta of the two bands.

B. Results

Now we analyze the OM of the disordered 2D Rashba
model in detail. The calculation procedure follows our discus-
sion in Secs. I A and II B. Since we have seen that both the
spin-orbit coupling and the exchange coupling are essential
ingredients for the OM, in the following we shall consider two
different regimes of the model determined by the competition
between the Rashba spin-orbit coupling and the exchange
coupling. For each regime, we first analyze the clean limit
where the physical picture is more transparent, and then study
the influence of disorder scattering, which is the focus in this
paper.

We first consider the regime where the Rashba coupling
dominates over the exchange coupling (i.e. 2ma? > Ag). The
typical band dispersion in this regime is shown in Fig. 1(a)
(with 2ma? = 3.59 and Ay = 0.1). In this regime, the bottom
of the lower band occurs at a finite wave vector. The energy
spectrum around the origin has an effective Dirac cone
structure with a local gap 2A( at p = 0. Both the orbital
moment and the Berry curvature are concentrated near this
band anticrossing point, as is evident from Egs. (30) and (31).
Figure 1(b) shows the OM for the clean limit. The orbital
moment contribution M, and the Berry curvature contribution
Mg are also plotted in Fig. 1(b). We can see that as the
Fermi energy Er increases from the lower band bottom, Mg,
increases while M, decreases. The increasing rate of Mg, is
higher than the decreasing rate of My, so the overall OM is
increasing. The OM reaches its maximum when Erp = —A,,
which corresponds to the local band top around the origin
in momentum space. As the Fermi energy sweeps across the
local energy gap between — A and + A, the OM decreases ap-
proximately linearly with E r. The linearity can be understood
by noticing that from Eq. (26) the derivative of the OM with
respect to Ef is just the momentum space integral of the Berry
curvature. The Berry curvature distribution is concentrated
near the band anticrossing point, corresponding to the small
region around the origin in the present model. When the Fermi
energy is within the gap, the Berry curvature integral only
has contribution from the lower band and is almost constant,
therefore leading to the linear energy dependence of OM.
This linear decrease of OM stops when the Fermi energy
touches the bottom of the upper band at +A,. Above the
upper band bottom, Mg and M,, almost cancel each other
and the OM is vanishingly small. Throughout the spectrum,
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FIG. 3. (Color online) (a) Orbital magnetization (OM) as a
function of Fermi energy Ey with different impurity concentration
Nimp- (b) Density of OM with different impurity concentration ;.
These quantities are plotted in units of e /7. The parameters are chosen
as 2ma? = 3.59, Ag = 0.1, and up,, = 0.1.

M, is positive while Mg is negative, corresponding to the
paramagnetic and diamagnetic responses respectively. This has
a clear explanation in the semiclassical picture: M, is due to
the self-rotation of the wave packet, which is paramagnetic,
while Mg is from the center-of-mass motion of the wave
packet, hence is diamagnetic.'®

When the exchange coupling dominates over the Rashba
energy, The minimum of the lower band occurs at the origin.
Compared with the previous case, there is no local gap at
p = 0. The typical band dispersion is shown in Fig. 2(a) (with
Ao = 0.1 and taking 2ma? = 0.08). The overall shape of the
OM is similar to that for the first case. Its distribution over
spectrum is mainly below the upper band bottom. However,
due to the absence of the local gap, the kink point at —A in
Fig. 1(a) merges with the lower band bottom. Moreover, the
two contributions Mg, and M, strongly cancel each other and
the resulting OM is much smaller.

Now let us consider the effects of disorder scattering on the
OM in our model. When the disorder scattering is turned on,
the translational invariance is broken. We can no longer define
quantities such as Mg and M,,. Their effects are merged
into the sophisticated expression in Eq. (23). Figures 3(a)
and 4(a) show the OM versus Ef for the two regimes we
discussed above. The different curves in each figure correspond
to different impurity concentrations niyp. Compared with the
clean limit where niy, = 0, we see that the shape of the OM
curve is almost unchanged but mainly its position is shifted by
the scattering. This behavior is more obvious when we look at
the density of OM shown in Figs. 3(b) and 4(b). For the clean
limit, we see that the major contribution to the OM is from
the states at the band bottom and at the local band edge. The
effect of disorder scattering here is to shift the the density of
OM distribution in energy. Such a shift can be understood by
noticing that the OM only has the Fermi-sea contribution. The
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FIG. 4. (Color online) (a) Orbital magnetization (OM) as a
function of Fermi energy Ey with different impurity concentration
Nimp- (b) Density of OM with different impurity concentration 7;p,.
These quantities are plotted in units of e /7. The parameters are chosen
as 2ma? = 0.08, Ag = 0.1, and uy,, = 0.1.

main effect of scattering in Eq. (23) is the shift of energy arising
from the real part of the self-energy correction.”' For the short-
range disorder model, the disorder potential is a constant in
momentum space, hence the self-energy is independent of the
state, which results in a rigid energy shift for all the states. For a
general disorder potential, the energy shift would be generally
different for different states therefore the distribution of OM
would be distorted. The effects of finite-range disorders are
currently under investigation.

To leading order, the shift should be linear in the disorder
density nimp. In Fig. 5 we plot the OM as a function of Er and
nimp- The linear dependence of the energy shiftin 7;y, is clearly
observed. Apart from the energy shift, the scattering-induced
state broadening is manifested as the smoothing of the peaks of
the density of OM, which can be clearly observed in Figs. 3(b)
and 4(b). The peaks of OM are only slightly decreased by the
scattering. This means that the OM carried by the electronic
states are quite robust against scattering.

Moreover, Figs. 3(b) and 4(b) show us a sign change of
density of OM when the OM sweeps across its maximum.
The change indicates the transition from the paramagnetic

(a) 2 (b) 2
.gl g 1
= =
0 0
-1 0 EF 1

BT T OM
0 0.005 0.015

0 05 EF 1.5

T . OM
00.0005 0.0015

FIG. 5. (Color online) Orbital magnetization (OM) as functions
of Fermi energy Er and the impurity concentration 7y, in units of
e/h. The parameters are chosen as Ay = 0.1, and uj, = 0.1, except
the Rashba energy: (a) 2ma? = 3.59, (b) 2ma? = 0.08.
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to diamagnetic susceptibility.’>>3 When the impurities are
present, the position of transition point is moving along Er
axis with increasing 7iyp.

IV. CONCLUSION AND OUTLOOK

In summary, we have derived a formula of the OM of
disordered electron systems based on the Keldysh-Green’s
function theory. This approach was developed as a systematic
approach to the nonequilibrium electron dynamics under
external fields. In the formula, OM is expressed in terms of the
Green’s functions and self-energies, which can be solved from
the Dyson equations, and systematic approximation schemes
to the disorder effects can be employed. We find that there is
no Fermi surface contribution as in the case of the current
response. Our formula applies not only for insulators but
also for metallic systems, where the quasiparticle behavior
is usually strongly modified by the disorder scattering. It
can also be straightforwardly implemented in the numeri-
cal calculation. In the clean limit, our formula reduces to
the previous result obtained from other approaches. As an
application, we calculate the OM of a weakly disordered
two-dimensional electron gas with Rashba spin-orbit coupling.
The result shows that in the simplest white noise short-range
disorder model, the OM is robust against weak scattering and
the main effect of scattering is a rigid shift of the distribution
of OM in energy, which can be attributed to the real part of the
self-energy.
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APPENDIX A: SELF-CONSISTENT EQUATION FOR %X
AND EXPLICIT FORMS OF GF

The Green’s functions and self-energies in the absence of
the external fields are obtained from the coupled self-consistent
equations (7), (15), and (17). In our model, a direct analytical
integration in & shows that

nimpuimp[l - uimpgé{o(s)]

280 = . (AD
[1 = timped®(e)]” — ud 88 (e)?
MimplZnp 80 (€)
28 = ‘;E P2 . (A2)
[1 — uimpg*(e)]” — unp80~(e)?
= (e) = 237 () =0, (A3)
where
R
RO, M Gy(e,A,0) 2R
80" = s gln R0 " (€), (A4)
&) = [ — Ao + ZF@)]2f (o), (AS)
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and where A is the cut-off in momentum integration, and
2i(e) = —{ZGIn e — p*/om Goe) = Gi°@6’ + D G, (A9)
80 4 thR( ) V4 I=x,y,z
with
p=A RO 2 RO AR
Gy (e,p)=|e—p7/2 - Gy (e,p), (A10
+M_E§o(8)+maz+aRR(8)]} (A6 §ep) = [e — p*/2m + u — E§°(e)] G (e, p), (A10)
p=0

G§'(e.p) = |—aeij.p; + 8i.[— Ao + 25 ()1} G (e, p).

Gie.p. ) = {s —p*2m+u—28%Ce) (A11)

Gle,p) =[e — pP/2m + u— =80

-1
Fya?p*+ [—Ao+2§z(s)]2} . (A7) +a’p?+ [ — Ao+ 25“(8)]2, (A12)

and ¢;;; is the antisymmetric tensor, (i, j, [, ...) label the
Cartesian components. The same results have been obtained
in Ref. 35.
1 For each ¢, the self-energy can be calculated by iterations,
+ [ — A+ E(Ifz (8)]2} ’ , (A8) which can be performed until the the prescribed accuracy is
reached.

RR(e) = {(ma?)* + 2me*[s + 1 — 2fe)]

APPENDIX B: SELF-CONSISTENT EQUATION FOR Gg AND £ X AND THEIR EXPLICIT FORMS

The equations for solving the first-order corrections G R and p) X are presented here. Using Egs. (14) and (16), the retarded
Green’s function G ® can be rewritten as
GR(e) = GR%e)6” + GR(e) - 6., (B1)
with

GR%e,p) = [GEe,p)? + GE(e.p)?|=8%e) + 2GE(e)G R (e.p) - R (e) + GE(e,p)[8,, Ho(p) x GE(e.p)] - [8,, Ho(P)],

(B2a)
GR(e.p) = GR(e.mTE(e) — GEE.PGE (e.p)8,, Ho(@)] X [8,, Ho(®)] — G [8,, HY ()]G (2.p) X [, Ho(p)]
+ G [0, HYD]GE(e,p) x [8,, Ho(@)] + 2GE&(e.p)(GE(e,p)ZR(e) + GE(e.p) - ZE(e)), (B2b)
and the inner product of two vectors are defined as
A-B= > AB. (B3)
I=x,y,z
From Egs. (16) and (17), we write the self-energy b g () as
ShE) =26+ Y =fe)s, (B4)
I=x,y,z
with
5°(6) = nimptiinp {[1 = wimpf*@)]" — hp2s (2} ({1 = timpel @] + s ()} 250)
+2[1 = timpgd® (&) |uimpge “(e)85°(8)), (B5a)
RZ(S) - n'mpulzmp{[l B uimPgO (8)] 1mpg0 (8)2} ({[1 - uimpgém(g)]z 1mpg0 (S)Z}g (8)
+ 201 — timpg* (@) |uimpgg  (£)g 5 (8)), (BSb)
TH(€) = timptlp | [1 — timpg () — by 2(e)*} ' 2K (o), (B5c)
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and we have

80%(e )_/(2 2 G%. (B6)

where o € {0,x,y,z}. The zeroth-order components GX* are computed as in Appendix A and are used as input for the above
equations.

APPENDIX C: PARTICLE DENSITY

Here, we present the derivation of Eq. (19). In the absence of disorder scattering,
GoMe.p) = [e — Ho(p) £ 0717 Cn
At zero temperature, plugging Eq. (C1) into Eqgs. (12) and (18), we can obtain

de d’p 1 1 1
= - - hB n x m m n
/5 e {ZG_%ﬂm FB Y s g SUnlE ) el P
)

u,p are the eigenfunctions of the unperturbed Hamiltonian and €,, the eigenvalues. The integral over € contains simple and

double poles. Using the residue theorem,>* we obtain
d2
ne = f Gty Z{l +2ieh B Z S ttp| D (D) ttmp) (141 10, (D) 14p) 1}, (C3)
where occ denotes summing over occupied states. Further simplification can be made by using the Sternheimer equation
0;(P)litnp) = ( )8”"">+ AT (C4)
Uj Upp) = (€up — €y Unp),
J P P P apl apj P
and we finally arrive at the equation
—Z/ &’p [1+:B 2,0)] (C5)
‘T L] Ganp L TR L

APPENDIX D: ORBITAL MAGNETIZATION IN THE CLEAN LIMIT

The derivations of Eq. (27) for the OM in the clean limit are present below. When the relaxation rate vanishes, substituting
Eq. (C1) into Eq. (24), we can write Eq. (24) as

= eh/ fe )/ o h)2 ;(Qw - M)S[<unp|ﬁx(p)|ump><ump|ﬁy(p)|”np>]

1 1 1
— D1
|:(6—€np+10+)26—6mp+i0+ (e—enp+i0+)26—emp+i0+] (DD
Using the residue theorem, we find that

= —eh/ d2p X |:f(6mp) — f(Enp) + f/(enp)

(27771}2 (Emp - an)z €np — €mp

] X 3 Y (enp — 1 (ttnp| 0 (P)ttnp) (tmp Dy (P)|1tp)] (D)

nm

where f,;p =90f (e,,p) /0€,p. With the help of the Sternheimer equation Eq. (C4), we obtain

i n l,ln , aun n aun
M = Eeh (27_[}-1)2 Z |:( €np /’L)< p [Enp - HO(p)] X D p>fnp — < app [an + Ho(p) — 2] x app >fnp] z (D3)
The above result can be written as
M = Z {mn(p)fnp + (an - M)mn(P)f,:p - g(énp — /,L)an(p)} s (D4)

np

where m,(p) = (e/2h)i(Vpuup|le,(p) — I:IQ(p)] X |Vpnp) is the orbital moment of state n,p and 2,,(p) = i (Vpuup| X [Vpityp)
is the Berry curvature. At zero temperature, f’ becomes a § function of (€,p, — 1), therefore we have in this case

M =Y [ma®) fop = - (Ep = 102D (D3)
np
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