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The exact macroscopic wave functions of two-species Bose-Einstein condensates in an optical lattice beyond
the tight-binding approximation are studied by solving the coupled nonlinear Schrödinger equations. The phase
diagram for superfluid and insulator phases of the condensates is determined analytically according to the
macroscopic wave functions of the condensates, which are seen to be traveling matter waves.
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I. INTRODUCTION

Since the realization of Bose-Einstein condensates
sBECsd in dilute atomic gases, a number of interesting ex-
periments have been conducted to investigate multispecies
Bose gases, in which two or more states of condensates exist
together in a magnetic or optical trapf1,2g. Recently, vortex
states have been obtained in a two-species Bose gasf3g.
Progress in the experiments exploring dilute mixtures of
quantum gases has stimulated intensive research on the prop-
erties of mixed Bose gases at zero temperaturef4–6g and
finite temperature as wellf7g.

The BEC trapped in an optical lattice exhibites a novel
feature, namely the quantum phase transition between a Mott
insulator and a superfluidf8g. Such quantum phase transition
has attracted considerable attention in recent years. As a mat-
ter of fact, atomic gas of bosons in BEC subjected to a lattice
potential which is turned on smoothly can be kept in the
superfluid phase as long as the atom-atom interactions are
small comparing with the tunnel coupling. In this regime, the
kinetic energy is dominant in the total energy of the boson
system. With an increase of the potential depth of the optical
lattice, it is getting more and more difficult for bosons to
tunnel from one site to the other, and finally the system at-
tends an insulator phase above a critical value of the poten-
tial depth. In this case, the phase coherence is absent and the
number of boson atoms in each lattice site becomes the
same. The system possesses a Mott-insulator behavior. Vari-
ous approaches have been proposed to understand theoreti-
cally the quantum phase transition and to determine the
phase diagram as a function of BEC parametersf9–14g.

Motivated by both the experimental and theoretical
progress, in the present paper we study the phase diagram for
superfluid and insulator phases of two-species BECs in a
one-dimensionals1Dd optical lattice and the property of per-
sistent current as well. The paper is organized as follows. In
Sec. II, the exact macroscopic wave functions of the conden-
sates which are not in the tight-binding regime are con-
structed by solving the coupled nonlinear Schrödinger equa-
tions. In Sec. III, the phase diagram is determined
analytically according to the macroscopic wave functions of
the condensates, i.e., the order parameters. Finally, we sum-
marize our results in Sec. IV.

II. THE EXACT MACROSCOPIC WAVE FUNCTIONS

In this 1D geometry, the confinement along the radial di-
rection is so tight that the trap frequencyv0 along the radial
direction is much greater than the mean-field interaction en-
ergy. At low temperatures, the dynamics of the atoms in the
radial direction is essentially “frozen,” with all the atoms
occupying the ground state of the harmonic trap with the
wave function that

f0sy,zd =Î 1

pl0
2 expf− sy2 + z2d/2l0

2g. s1d

Here the extension of the wave function in the radial direc-
tion is given by the length scalel0;Î" /mv0 of a harmonic
oscillator, wherem is the mass of the atoms.

In the mean-field regime,l0 is much greater than the ra-
dius of the interatomic potentialRe. The scattering of atoms
in this effective 1D system is thus still a process of three-
dimension. According to Ref.f15g, the effective coupling
constant in this 1D system is

g1D =
2"2

m

a

l0sl0 − Cad
, s2d

wherea is thes-wave scattering length andC is a numerical
constant of the order unit. The termCa in Eq. s2d is negli-
gible for l0@Re. In this limit, the expression forg1D is the
same as that obtained by averaging over the radial wave
function s1d,

g1D = g3DE
−`

` E
−`

`

dydzf0
4sy,zd =

2"2a

ml0
2 . s3d

We use this expression in the rest of this paper.
We consider the two-species BECs in a 1D periodic po-

tential. The energy functional is seen to be

Efc1,c2g =E dxH o
i=1,2

F "2

2mi
U ]ci

]x
U2

+ Visxduciu2 +
"2ai

mil i
2 uciu4G

+
2"2a12

Îm1m2l1l2
uc1u2uc2u2J , s4d

where ci, mi, and l i =Î" /miv0 are the macroscopic wave
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functions of the condensates, the mass, and the harmonic-
oscillator lengths in the radial direction of theith speciessi
=1,2d, respectively.a1, a2, anda12 denote thes-wave scat-
tering lengths between same-species and interspecies colli-
sions.Visxd are the periodic potentials,

Visxd = V0,isn2skLx,kd, s5d

with V0,i denoting the magnitude of potentials, wherekL
=2p /l is the wave vector of the laser light andl is the
wavelength, corresponding to a lattice periodd=l /2.
snskLx,kd is the Jacobian elliptic sine function with modulus
ks0økø1d. In the limit k=0, the Jacobian elliptic sine re-
duces to the sinusoid function and thusVsxd possesses a
standard form of the standing light wave. For values ofk
,0.9, the potential is virtually indistinguishable from a
standing light wave. Finally, fork→1, Vsxd becomes an ar-
ray of well-separated hyperbolic secant potential barriers or
wells.

The governing equations of the trapped BECs are ob-
tained in terms of the variational proceduref16g,

i"
]ci

]t
=

dE

dci
* , s6d

which leads to the coupled nonlinear Schrödinger equations

i"
]c1

]t
= −

"2

2m1

]2c1

]x2 +
2"2a1

m1l1
2 uc1u2c1

+
2"2a12

Îm1m2l1l2
uc2u2c1 + V1sxdc1,

i"
]c2

]t
= −

"2

2m2

]2c2

]x2 +
2"2a12

Îm1m2l1l2
uc1u2c2

+
2"2a2

m2l2
2 uc2u2c2 + V2sxdc2. s7d

For the case of weakly coupled condensates in an optical
lattice f17g, the wave functionc can be decomposed as a
sum of wave functions localized in each well of the periodic
potentialstight-binding approximationd with the assumption
relying on the fact that the height of the interwell barrier is
much higher than the chemical potential. We, however, do
not restrict ourselves to the low-energy case and look for the
global condensate wave functions of excitations:cisx,td
=fisxdexps−imit /"d, wheremi si =1,2d are the chemical po-
tentials. Thus the spatial wave functions satisfy the stationary
coupled nonlinear Schrödinger equations that

m1f1 = −
"2

2m1

]2f1

]x2 +
2"2a1

m1l1
2 uf1u2f1 +

2"2a12

Îm1m2l1l2
uf2u2f1

+ V1sxdf1,

m2f2 = −
"2

2m2

]2f2

]x2 +
2"2a12

Îm1m2l1l2
uf1u2f2 +

2"2a2

m2l2
2 uf2u2f2

+ V2sxdf2. s8d

With the general form of spatial wave functionsfisxd
written asf18g fisxd=r isxdexpfiwisxdg, Eq. s8d can be sepa-
rated as real and imaginary parts. We then integrate once for
the imaginary part and obtain the first-order differential
equations for the phaseswisxd,

wi8sxd =
ai

r i
2sxd

, s9d

where parametersai si =1, 2d are constants of integration to
be determined. Substituting Eq.s9d into the real part obtained
from Eq. s8d and integrating again, we find

sr1r18d
2 =

2a1

l1
2 r1

6 −
2m1m1

"2 r1
4 + b1r1

2 − a1
2

+
4a12

Îm1

Îm2l1l2
r1

2E r2
2dsr1

2d +
2m1

"2 r1
2E V1sxddsr1

2d,

sr2r28d
2 =

2a2

l2
2 r2

6 −
2m2m2

"2 r2
4 + b2r2

2 − a2
2

+
4a12

Îm2

Îm1l1l2
r2

2E r1
2dsr2

2d +
2m2

"2 r2
2E V2sxddsr2

2d,

s10d

wherebi si =1,2d, denote additional constants of integration.
We then construct the solutions as

r i
2sxd = Aisn2skLx,kd + Bi , s11d

where the constantsBi si =1,2d, determine the mean ampli-
tudes and act as the dc offsets for the numbers of the con-
densed atomsf19g, and the parametersAi si =1,2d, are to be
determined.

Substituting Eq.s11d into Eq. s10d and using identities of
Jacobian elliptic functions, we obtain eight equations for the
parametersai, bi, mi, andAi. Eliminating bi, we find

A1 =

Îm1l1l2a12

Îm2

sm2V0,2− "2kL
2k2d − a2l1

2sm1V0,1− "2kL
2k2d

2"2sa1a2 − a12
2 d

,

A2 =

Îm2l1l2a12

Îm1

sm1V0,1− "2kL
2k2d − a1l2

2sm2V0,2− "2kL
2k2d

2"2sa1a2 − a12
2 d

,

s12d

and

a1
2 = B1kL

2F k2

A1
B1

2 + s1 + k2dB1 + A1G ,

a2
2 = B2kL

2F k2

A2
B2

2 + s1 + k2dB2 + A2G , s13d

and
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m1 =
"2kL

2

2m1
S1 + k2 +

6a1

l1
2kL

2B1 +
4a12

Îm1

l1l2kL
2Îm2

B2 +
2a12

Îm1

l1l2kL
2Îm2

A2

A1
B1

+
m1V0,1

"2kL
2

B1

A1
D ,

m2 =
"2kL

2

2m2
S1 + k2 +

6a2

l2
2kL

2B2 +
4a12

Îm2

l1l2kL
2Îm1

B1 +
2a12

Îm2

l1l2kL
2Îm1

A1

A2
B2

+
m2V0,2

"2kL
2

B2

A2
D . s14d

For k=0, snskLx,0d=sinskLxd, the solutions reduce to

cisx,td = ÎAi
0sin2skLxd + Bi exphifwi

0sxd − mi
0t/"gj, s15d

where

A1
0 =

Îm1m2a12l1l2V0,2− m1a2V0,1l1
2

2"2sa1a2 − a12
2 d

,

A2
0 =

Îm2m1a12l1l2V0,1− m2a1V0,2l2
2

2"2sa1a2 − a12
2 d

. s16d

The phaseswi
0sxd si =1,2d, are determined by nonlinear

equations

tanfwi
0sxdg = ±Î1 +

Ai
0

Bi
tanskLxd s17d

and

m1
0 =

"2kL
2

2m1
S1 +

6a1

l1
2kL

2B1 +
4a12

Îm1

l1l2kL
2Îm2

B2 +
2a12

Îm1

l1l2kL
2Îm2

A2
0

A1
0B1

+
m1V0,1

"2kL
2

B1

A1
0D ,

m2
0 =

"2kL
2

2m2
S1 +

6a2

l2
2kL

2B2 +
4a12

Îm2

l1l2kL
2Îm1

B1 +
2a12

Îm2

l1l2kL
2Îm1

A1
0

A2
0B2

+
m2V0,2

"2kL
2

B2

A2
0D . s18d

The constantsA and B are related by restrictions such that
B1ù−A1

0 for A1
0,0 andB1ù0 for A1

0.0; B2ù−A2
0 for A2

0

,0 andB2ù0 for A2
0.0.

III. THE PHASE DIAGRAM

The average particle number densitiesni for the two spe-
cies are obtained as

ni =
1

L
E

0

L

ucisx,tdu2dx=
1

hp
E

0

hp

fAi
0sin2sx8d + Bigdx8,

s19d

where x8=kLx and L=hd denotes the length of the optical
lattice with h=1, 2, 3,… . This leads to

Bi = ni −
Ai

0

2
. s20d

Then the macroscopic wave functions of the condensates
Eq. s15d can exist only when

n1 ù
uA1

0u
2

=
ua12V0,2− a2V0,1u
4"v0ua1a2 − a12

2 u
,

n2 ù
uA2

0u
2

=
ua12V0,1− a1V0,2u
4"v0ua1a2 − a12

2 u
. s21d

The condensate atom currents can be evaluated from the
usual definition,j =s" /mdImfc*s]c /]xdg f20g, with the exact
wave functions Eq.s15d which are seen to be travelling mat-
ter waves. The result is

j i = ±
"kL

mi

ÎBisBi + Ai
0d = ±

"kL

mi

Îni
2 −

sAi
0d2

4
, s22d

which are independent of spacetime variables and therefore
persistent currents. We may demand that the wave functions
Eq. s15d satisfy the periodic boundary conditioncisx,td
=cisx+L ,td which is naturally fulfilled as the total lengthL
is an integer times the lattice constantd sL=hd,h
=1,2,3. . . ,d. These periodic solutions in 1D space with spa-
tial periodL are equivalent to the solutions in a ring of cir-
cumstanceL. The persistent currents then can be viewed as
in the optical lattice ring.

It is found from Eq.s22d that the persistent currents are
valid only for conditions in which the number density of
atoms is greater than critical values,ni ù uAi

0u /2, i.e., when
the macroscopic wave functions of the condensates exist.
These persistent currents are similar to the 1D Fröhlich su-
perconductivity induced by the traveling lattice wavef21g
and can be controlled by adjusting the barriers height of the
periodic potentials and parameters of the bosonic atoms. The
currents increase with the decrease ofuAi

0u and approach the
asymptotic maximum valuesj i,max= ±"nikL /mi whenuAi

0u be-
come vanishingly small. With the recent progress made on
confinement of atoms in the light-inducedf22,23g as well as
the magnetic-field-inducedf24,25g atom waveguidesf26g,
the persistent currents may be observed experimentally in the
future.

The energy spectrum for the two species is obtained as

m1
0 = ER,1 +

V0,1

2
+ 2"v0sa1n1 + a12n2d,

m2
0 = ER,2 +

V0,2

2
+ 2"v0sa2n2 + a12n1d, s23d

whereER,i ="2kL
2 /2mi are the recoil energy of an atom ab-

sorbing one of the lattice phononsf17g.
In this paper, we consider the two species both with re-

pulsive interactions, namely,a1.0,a2.0,a12.0. Then the
macroscopic wave functions of the condensates can exist
only when
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m1
0 ù ER,1 +

V0,1

2
+

a1ua12V0,2− a2V0,1u
2ua1a2 − a12

2 u

+
a12ua12V0,1− a1V0,2u

2ua1a2 − a12
2 u

,

m2
0 ù ER,2 +

V0,2

2
+

a2ua12V0,1− a1V0,2u
2ua1a2 − a12

2 u

+
a12ua12V0,2− a2V0,1u

2ua1a2 − a12
2 u

. s24d

The macroscopic wave functions of the condensates
cisx,td are complex functions defined as the expectation

value of the boson field operators:cisx,td;kĈisx,tdl, which
have the meaning of order parameters and characterize the
off-diagonal long-range behavior of the one-particle density

matrix risx8 ,x,td=kĈi
†sx8 ,tdĈisx,tdl f16g. So the conden-

sates can be kept in the superflud phase only when the mac-
roscopic wave functions exist. Otherwise, the phase coher-
ence and the currents vanish and therefore the condensates
are in the insulator phase. Then we obtain four cases of
phases for two-species BECs in a 1D optical lattice as fol-
lows.

Case 1. The two species are both in the superfluid phase,
namely

n1 ù
ua12V0,2− a2V0,1u
4"v0ua1a2 − a12

2 u
,

n2 ù
ua12V0,1− a1V0,2u
4"v0ua1a2 − a12

2 u
, s25d

which is labeled as SS in the phase diagram, Fig. 1.
Case 2. Species 1 is in the superfluid phase while species

2 is in the insulator phase,

n1 ù
ua12V0,2− a2V0,1u
4"v0ua1a2 − a12

2 u
,

n2 ø
ua12V0,1− a1V0,2u
4"v0ua1a2 − a12

2 u
, s26d

labeled as SI.
Case 3. Species 1 is in the insulator phase and species 2 is

in the superfluid phase,

n1 ø
ua12V0,2− a2V0,1u
4"v0ua1a2 − a12

2 u
,

n2 ù
ua12V0,1− a1V0,2u
4"v0ua1a2 − a12

2 u
, s27d

labeled as IS.
Case 4. The two species are both in the insulator phase,

n1 ø
ua12V0,2− a2V0,1u
4"v0ua1a2 − a12

2 u
,

n2 ø
ua12V0,1− a1V0,2u
4"v0ua1a2 − a12

2 u
, s28d

labeled as II.
The quantum phases of the condensates can be deter-

mined by all parameters of BECs and optical lattice as
shown above. In Fig. 1, we show the phase diagram with the
various same-speciess-wave scattering lengths and equal
particle number densitysn1=n2=nd and the magnitudes of
potentialssV0,1=V0,2=V0d for simplicity. Thus the conditions
for the two species in the superfluid phase are given by

V0

4n"v0
ø

ua1a2 − a12
2 u

ua12 − a2u
s29d

and

FIG. 1. Phase diagrams of two-species BECs in a 1D optical
lattice. The magnitude of potentialsV0 is in units of 4n"v0. The
interspecies scattering length is in units of nm. Dashed curves:
phase boundary of species 1; solid curves: phase boundary of spe-
cies 2. Thes-wave scattering lengths between the same species are
as follows:sad a1=6 nms87Rbd , a2=3 nms23Nad. sbd a1=3 nmshy-
perfine stateuf =1,mf =1l of 23Nad, a2=2.5 nm shyperfine stateuf
=1,mf =0l of 23Nad.
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V0

4n"v0
ø

ua1a2 − a12
2 u

ua12 − a1u
, s30d

respectively.
Component separation in two-species BECs has been pre-

dicted by means of mean-field theoryf4–7g and observed in
experimentsf1,2g when the relation of the scattering lengths
that a12.Îa1a2 is fulfilled. From the above conditions Eqs.
s29d ands30d and the phase diagram Fig. 1, we find that the
larger values ofa12 favor the superfluid phase in the two-
species mixture and the component separation according to
the experimental observationf1,2g. Particularly when the in-
terspecies scattering length approaches the value of the same
species such thata12=a2 or a1, the conditions Eqs.s29d and
s30d result in the superfluid phase independent of the poten-
tial magnitudeV0. One should not be surprised by this result
since we consider the case in which the chemical potential is

always higher than the potential magnitudeV0 seen from Eq.
s24d.

IV. CONCLUSION

In conclusion, the exact macroscopic wave functions of
two-species BECs in an optical lattice beyond the tight-
binding approximation are studied. The phase diagram is de-
termined analytically according to the order parameters, and
persistent currents in an optical lattice ring are obtained ex-
plicitly in terms of the exact wave functions, which are seen
to be traveling matter waves.
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