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Magnetic solitons in spinor Bose-Einstein condensates confined in a one-dimensional optical lattice are
studied by the Holstein-Primakoff transformation method. It is shown that due to the long-range light-induced
and static magnetic dipole-dipole interactions, there exist different types of magnetic solitary excitations in
different parameter regions. Compared to conventional solid-state materials, the parameters of this type of
magnetic solitons in an optical lattice can be easily tuned by the above dipole-dipole interactions, which are
highly controllable in experiments.
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I. INTRODUCTION

Recently, spinor Bose-Einstein condensates(BECs)
trapped in optical potentials have received much attention in
experimental[1] and theoretical fields[2]. Spinor Bose-
Einstein condensates have internal degrees of freedom due to
the hyperfine spin of the atoms. When spinor BECs are
trapped in a magnetic potential, these degrees of freedom are
frozen. However, when they are trapped in optical potential,
the spin degrees of freedom are liberated and a rich variety
of phenomena such as spin domains[3] and textures[4] have
been observed. Recent studies show that spinor BECs, if
localized in the optical lattices deep enough for the indi-
vidual sites to be independent, can undergo a ferromagnetic-
like phase transition that leads to a “macroscopic” magneti-
zation of the condensates array[5,6]. Spinor BECs at each
lattice site behave like spin magnets and can interact with
each other through both the light-induced dipole-dipole in-
teraction and the static magnetic dipole-dipole interaction.
These site-to-site dipolar interactions can cause the ferro-
magnetic phase transition and the spin-wave excitation[5,7].
These phenomena are analogous to the ferromagnetism in
solid-state physics, but occur with bosons instead of fermi-
ons. For fermions, the site-to-site interaction is caused
mainly by the exchange interaction; the dipole-dipole inter-
action is small and can be neglected. For the spinor BEC in
the optical lattice, the exchange interaction is absent and the
individual spin magnets are coupled by the magnetic and
light-induced dipole-dipole interaction[7]. Due to the large
number of atoms,N, at each lattice site, these interactions are
no longer negligible, despite the large distance, on the order
of half of an optical wavelength, between sites. So, the
spinor BECs in an optical lattice offer a totally new environ-
ment to study spin dynamics in periodic structures. In Ref.
[7], the spin wave excitation of spinor BECs has been stud-
ied. However, the interaction between the spin waves has not
been considered. This interaction would excite a magnetic
soliton, which is also an important and interesting phenom-
enon in spin dynamics.

In this paper, we want to show that, due to the interactions
between the spin waves of spinor BECs in a one-dimensional

optical lattice, the magnetic solitons may exist, and this type
of magnetic soliton can be easily tuned by the light-induced
and the magnetic dipole-dipole interactions. The magnetic
soliton, which describes localized magnetization, is an im-
portant excitation in the Heisenberg spin chain[8]. In the
previous studies, the conventional magnetic solid materials
containing many domains are often used, of which one pos-
sesses its own set of parameters such as magnetic anisotropy
and barrier energy and is not easily adjusted. In addition, due
to the difficultly of cooling the samples down to ultracold
temperatures, thermal processes cannot be completely ex-
cluded. The defects and impurities of magnetic materials
would also have important influences and need to be consid-
ered. But for the systems of spinor BECs in the optical lat-
tice, the above difficulty is automatically excluded. So, these
systems can give us a tool to investigate the nonlinear exci-
tations in spin systems.

II. THE SPIN HAMILTONIAN FOR SPINOR BEC
IN AN OPTICAL LATTICE

The dynamics of spinor BECs trapped in optical lattices
are primarily governed by three types of two-body interac-
tions: spin-change collision, magnetic dipole-dipole interac-
tion, and light-induced dipole-dipole interaction. The Hamil-
tonian takes the following form:

H = o
n
E dr ĉn

†sr dF−
"2¹2

2m
+ VLsr dGĉnsr d

+ o
n,m,n8,m8

E drdr 8ĉn
†sr dĉm

† sr 8dfVnn8mm8
coll sr ,r 8d

+ Vnn8mm8
d−d sr ,r 8dgĉm8sr 8dĉn8sr d + HB, s1d

where VLsr d is the lattice potential, and the indices
n,m,n8 ,m8=−F , . . . ,F denote the Zeeman sublevels of the
ground state of the atoms with angular momentumF.
Vnn8mm8

coll sr ,r 8d describes the two-body ground-state colli-
sions,Vnn8mm8

d-d sr ,r 8d include magnetic dipole-dipole inter-
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action and light-induced dipole-dipole interaction, andHB
represents the external magnetic interaction.

When the potential depth of the optical lattice is large
enough, it is convenient to expand the spinor atomic

field operator asĉmsr d=oi fisr dCmsid, where fisr d is the
condensate wave function for theith microtrap and the

operatorsĈmsid satisfy the bosonic commutation relations

fĈmsid ,Ĉn
†s jdg=dmndi j . Under the tight-binding approxima-

tion and considering only the spin-dependent terms, we can
construct the effective spin Hamiltonian from Eq.(1) [5,7],

H = o
i
Fla8Ŝi

2 − gBŜi ·B − o
jÞi

JijsŜi
−Ŝj

+ + Ŝj
+Ŝi

−d − o
jÞi

JmdŜi
zŜj

zG ,

s2d

where Jij =Jij
ld− 1

4Jij
md, Jij

md is a coefficient which
represent magnetic dipole-dipole interaction, andJij

ld is
a coefficient which represents light-induced dipole-dipole
interaction. The collective spin operators are defined as

Ŝi =omn Ĉm
† sidFmnĈnsid with componentsŜi

h±,zj, whereFmn is
the matrix element of the angular momentF. The direction
of the magnetic fieldB is along the one-dimensional optical
lattice, which we choose as the quantization axisz, and
B=Bzz. The parametergB=−mBgF, with mB being the Bohr
magneton andgF the Landég factor. The first term in Eq.s2d
results from the spin-dependent interatomic collisions at a
given site, withla8=s1/2dlaed3r ufisr du4. The last two terms
describe the site-to-site spin coupling induced by the static
magnetic and light-induced dipole-dipole interactions. The
ground state of the Hamiltonian isug.s.l= uN,−Nl without
interaction terms, whereN=oi Ni is the total atomic num-
ber in the lattice. The total spin at sitei has the expecta-

tion value kŜi
zl=Ni". Due to the large factorNi, the mag-

netic dipole-dipole interaction in the optical lattice cannot
be neglected. After the site-to-site coupling is considered,
the transfer of the transverse spin excitation from site to
site is allowed, resulting in the distortion of the ground-
state spin structure. This distortion can propagate and
hence generate magnetic soliton or spin wave along the
atomic spin chain.

III. THE NONLINEAR EXCITATIONS OF SPINOR BEC
IN AN OPTICAL LATTICE

For Jij Þ0, the transfer of transverse spin excitation from
site to site is allowed, resulting in the distortion of the
ground-state spin structure. This distortion can propagate and
hence generate spin waves along the atomic spin chain. Ac-
cording to the Holstein-Primakoff(HP) transformation, we
can introduce the local spin-deviation operatorn̂=S−Sz with
the eigenvaluesn=S−m. So, increasingm decreasesn and

vice versa. For the stateunl, Ŝ−unl=Îs2S−nds1+ndun+1l
and Ŝ+unl=Î2S−sn−1dÎnun−1l. We can define the creation
and annihilation operatorsa and a† on the stateunl as
aunl=Înun−1l and a†unl=În+1un+1l and thea†aunl=nunl.
The operatorsa† anda satisfy the following boson commu-
tator relation:fa,a†g=1,fa,ag=fa†,a†g=0. According to the

above relations, we can represent the spin operators by
means of the Bose operatorsa† and a according to HP

transformations[9] Ŝ+=sÎ2S−a†ada, Ŝ−=a†sÎ2S−a†ad, and

Ŝz=sS−a†ad. The square-root factors can be expanded in
powers of 1/SasÎ2S−a†a=Î2Ss1−a†a/4S+¯d. If we take
the first-order approximation, i.e.,Î2S−ai

†ai <Î2S and sub-
stituting these transformations into Eq.(2), we can obtain the
Hamiltonian which describes spin waves:

H = − gBNSBz − JzZNS2 + o
i

gBBzai
†ai + 2ZJzSo

i

ai
†ai

− 2SJo
id

sai
†ai+d + aiai+d

† d. s3d

The above Hamiltonian can be diagonalized by the Fourier
transformation toai

†, ai and the dispersion relation of the spin
wave can be obtained:

"vk = − gBBz + o
d.0

f4JmdS− 8SJcossdkdg, s4d

where we replaceJij
md,Jij

ld with their average valuesJMD, JLD,
andJ=JLD−JMD /4. From Eq.s4d, we can find that the dis-
persion relation of the spin wave derived by HP transforma-
tion is the same as the relation derived in Ref.f7g. In the
optical lattice, the dispersion relation of the spin wave can be
easily tuned by the light-induced and magnetic dipole-dipole
interaction. But in the solid-state magnetic materials, the dis-
persion relation of the spin wave can be tuned with some
difficulty by the exchange interaction, which is determined
by properties of the magnetic material itself and is approxi-
mated as a constant.

The higher-order terms, i.e.,Î2S−a†a<Î2Ss1−a†a/
4S+¯ d, can introduce nonlinear interactions between spin
waves, and then the Hamiltonian(2) becomes

H = la8NSsS+ 1d − gBBzSN+ gBBzo
i

ai
†ai

− o
i

o
jÞi

sJij
mdS2 − Jij

mdSaj
†aj − Jij

mdSai
†ai + Jij

mdai
†aiaj

†ajd

− o
i

o
jÞi

s2JijSai
†aj + 2JijSaiaj

†d +
1

2o
i

o
jÞi

Jij

3sai
†ai

†aiaj + ai
†aj

†ajaj + ajai
†ai

†ai + aj
†ajajai

†d + ¯ ,

s5d

where we omit the negligible fourth-order term.
The nonlinear interaction terms in Hamiltonian(5) gener-

ate the nonlinear magnetic excitations such as mixing of spin
waves or magnetic solitons, depending on the initial setup of
the state of the spin system. Here we are interested in the
type of nonlinear excitations with magnetic solitons. To ef-
fectively observe the magnetic solitons in the nonlinear ex-
citations, the ideal case is that the spin system in the optical
lattice should initially be prepared in a spin-coherent state
ucl= uhcljl=Pl ucll, with ucll=exps−uclu2/2dexps−cla

†du0l.
The vacuum stateu0l is the ground state of the BEC in the
optical lattice, i.e.,u0l= ug.s.l= uN,−Nl [9]. Experimentally,
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such a spin-coherent state can be prepared by applying a rf
pulse field along the transverse direction such as they axis to
the BEC in the ground state. If the rf pulse is short enough so
that during the interaction of the spin system with the pulse,
other interactions can be ignored, then in the rotating-wave
frame with the Larmor frequencyvL=gBBz, the rf pulse field
would lead to a transformation

Dscd = exp fiusŜ+ − Ŝ−d/2g < exp fcsa − a†dg, s6d

whereu is the area of the rf pulse andc= iuÎ2S. The trans-
formation Dscd, operating at each lattice site, exactly
leads to a coherent stateucl for the spin excitations.

Under the spin-coherent state and using the time-
dependent variation principle, the nonlinear operator motion
equation of Hamiltonian(5) can be transformed into the
probability amplitude, Eq.(7), where cl =kcualucl is the
probability amplitude describing the nonlinear dynamics of
coherent spin excitations on the latticel,

i"
] cl

] t
= sgBBz + 4JMDS− 8JSdcl + 4JSs2cl − cl+1 − cl−1d

− 2JMDsucl−1u2 + ucl+1u2dcl

+ Jsucl+1u2cl+1 + ucl−1u2cl−1 + 2uclu2cl+1 + 2uclu2cl−1d

+ Jscl+1
+ + cl−1

+ dcl
2, s7d

where we consider only the nearest-neighbor interactions
swhich is a good approximation for the BEC in a one-
dimensional optical lattice as the large lattice constant and
similar approximation has been adopted in Ref.f10gd.

When the optical lattice is infinitely long and the spin
excitations are in the long-wavelength limit,cl ,cl+1,cl−1
→csz,td in the continuum limit approximation, we get the
following soliton solutions in different regions[11]
which can be described by the two parameters asa=4JS
=4SsJLD−JMD /4d andb=s4JMD−8Jd=6JMD−8JLD.

(1) WhenJLD,JMD /4, a,0, andb.0, Eq. (7) has the
following single dark soliton solution:

csz,td =Î−
b

a
tanhF−

b

Î2a
sz− vtdG exp fisgz− v1tdg,

s8d

where "v1=gBBz+4JzS−8JS−av2/4−2b2/ uau is the
single dark soliton energy, andg=v /2, where v is the
velocity of the soliton. It is easy to see that the soliton
energy "v1 is smaller than the spin-wave energy
obtained above and that the amount is 2b2/ uau when
v<0. From Eq. s8d, we can find that the amplitude
and width of the magnetic soliton of spinor BEC in
the optical lattice are G=−b /a=s3B1−1d / f2SsB1−1dg
and W=−Î2a /b=Î2SsB1−1d / f6sB1−1/3dg, respectively,
where B1=JMD /4JLD.1. So, the dynamic characteristics
of the magnetic soliton existing in an optical lattice are
more easily controlled than those in conventional solid
magnetic materials. For example, whenB1 is increased
swhich can be realized simply by decreasing the light-
induced dipole-dipole interactionJLDd, W is increased and

G decreased. It should be noted that for a system of the
optical lattice created by blue-detuned laser beams, the
atoms are trapped in dark-field nodes of the lattice and the
light-induced dipole-dipole interaction can be neglected,
i.e., JLD=0. So the magnetic soliton will have invariable
width and amplitude. This characteristic of the spin non-
linear excitation in the blue-detuned lattice might have
potential applications in the future.

The magnetic soliton collision may be also be conve-
niently examined in the optical lattice. For example, the in-
teraction of two dark magnetic solitons can be described by
the following form:

ucsz,tdu2 =
2r2

b
UD1

N1
U2

, s9d

where

D1 = 1 + expsi2h1 − 2u1d + expsi2h2 − 2u2d

+ exp fi2sh1 + h2d − 2su1 + u2dgA,

N1 = 1 + exps− 2u1d + exps− 2u2d + exp f− 2su1 + u2dgA,

u1 = m1
Î− asz− 2v1

Î− atd,

u2 = m2
Î− asz− 2v2

Î− atd,

r2 = v1
2 + m1

2 = v2
2 + m2

2,

A =
r2 − v1v2 − m1m2

r2 − v1v2 + m1m2
, s10d

r is background amplitude, expsi2h1d=sl1+ ik1d2/r2, and
exp si2h2d=sl2+ ik2d2/r2. v1

Î−a, v2
Î−a and m1

Î−a,
m2

Î−a refer to the velocity and width of magnetic solitons,
respectively. For simplicity, here and in the following para-
graph, we assume that the values of the initial phases and
coordinates of the center of the two magnetic solitons are
zero. The interactions of the two magnetic solitons are sche-
matically shown in Fig. 1. By checking Fig. 1, we can see
that the collision of two dark magnetic solitons in the optical
lattice we considered is elastic and each of the magnetic
solitons is restored to its initial form and velocity when it
leaves the interaction region. In addition, the length of the
interaction region of two dark magnetic solitons in the opti-
cal lattice is approximately proportional to 1/Î−a and can be
tuned easily. For example, the interaction region would be-
come small if we simply decrease the light-induced dipole-
dipole interactionJLD. It should be noted that in the above

FIG. 1. The interaction of two dark magnetic solitons.
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analysis, the collision of two magnetic solitons in the optical
lattice is elastic. The inelastic collision would appear if the
influences of higher-order terms in Eqs.(5) and(7) are con-
sidered.

(2) When 3
4JMD.JLD.

1
4JMD, a.0, andb.0, Eq. (7)

has the following bright magnetic soliton solution:

csz,td =Îb

a
sechFb

a
sz− vtdGexp fisgz− v2tdg, s11d

where "v2=gBBz+4JzS−8JS+av2/4−2b2/a ,g=v /2 ,v
is the velocity of the soliton. Similarly, we can see
that the energy of this bright magnetic soliton is also
smaller than the spin wave and the amount is 2b2/a
when v<0. The amplitude and the width of the above
bright magnetic soliton areG=b /a=s3B2−1d / f2Ss1−B2dg
and W=a /b=2Ss1−B2d / s3B2−1d, respectively, where
1/3,B2=JMD /4JLD,1. In this region, if we increase the
light-induced dipole-dipole interaction, i.e., decreaseB2, G
decreases andW increases. If we decrease the light-induced
dipole-dipole interaction, i.e., increaseB2, G would increase
andW would decrease.

The collision of the two bright magnetic solitons can be
described by the solution as

ucsz,tdu = 2Î2

b
UN2

D2
U , s12d

where

D2 = fsv1 − v2d2 + m1
2 + m2

2g + B, N2 = C1 + C2,

B = 2m1m2 tanhfu1g tanhfu2g

− 2m1m2 sechfu1g sechfu2gcosfw1 − w2g,

C1 = fsv1 − v2d2 + m1
2 − m2

2gm1 sechfu1gexp f− iw1g

− 2im2sv1 − v2dtanhfu2gm1 sechfu1gexp f− iw1g,

C2 = fsv1 − v2d2 − m1
2 + m2

2gm2 sechfu2gexp f− iw2g

+ 2im2sv1 − v2dtanhfu1gm2sechfu2gexp f− iw2g,

w1 =
2m1

Îa
z+ 4sv1

2 − m1
2dt, w2 =

2m1

Îa
z+ 4sv2

2 − m2
2dt,

u1 = m1
4

Îa
sz+ 2v1

Îatd, u2 = m2
4

Îa
sz+ 2v2

Îatd,

l1 = v1 + im1, l2 = v2 + im2, s13d

where 2v1
Îa, 2v2

Îa, and 4m1/Îa, 4m2/Îa are related to the
velocity and width of magnetic solitons, respectively. The
collision of two bright magnetic solitons in the optical lattice
system we considered is elastic and the interaction region
can also be tuned just as in the case of two dark magnetic
solitons discussed above.

(3) WhenJLD.4JMD /3, a.0, andb,0, Eq.(5) has the
solution

csy,td = 2Îb

a
cschF−

b

a
sz− vtdGexp fisgz− v3tdg,

s14d

where "v3=gBBz+4JzS−8JS+av2/4−2b2/a, g=v /2. But
this solution is divergent and has no corresponding physical
meaning. The magnetic soliton solution in this region may be
caused by the contribution of the neglected higher terms and
needs further study.

The magnetic solitons are localized excitations of spins
which result from the nonlinear interactions between spin
waves. In principle, the detection of the magnetic solitons
can be carried out through the Raman technique by measur-
ing the absorbtion spectrum of the Raman beams. This is
similar to what was proposed to detect the spin waves in Ref.
[7]. However, due to the localization of the magnetic soliton
in space, it may be easier to detect magnetic solitons through
the Raman absorption imaging of spin excitations at different
times. One can use the same combination of a circularly
polarized and ap-polarized Raman optical beam as that pro-
posed in Ref. [7] and measure the absorption of the
p-polarized Raman beam at different times. The absorption
of the p-polarized Raman beam is proportional to the prob-

ability of the spin transitionukŜ+lu2ucsz,tdu2. We see that one
can image the space distribution of the spin excitations along
the coherent spin chain of the condensed atoms in the optical
lattice through the measurement of the Raman absorption.
Comparing the images at different times, one can determine
the properties of the magnetic solitons defined by Eq.(8) or
(11).

IV. CONCLUSION

In conclusion, the nonlinear spin excitations of spinor
BECs in an optical lattice have been studied using the HP
transformation. The results show that the dark and bright
magnetic solitons may exist in spinor BECs in optical lattices
in different parameter regions. The width, the amplitude, and
the length of the interaction region of these solitons can be
adjusted by tuning the light-induced and magnetic dipole-
dipole interactions. Being different from the conventional
solid-state one-dimensional ferromagnetic chain, in which
the magnetic solitons result from direct Coulomb interaction
among electrons and the Pauli exclusion principle, i.e., ex-
change interactions. The magnetic solitons in spinor BECs in
optical lattices are mainly caused by the magnetic and light-
induced dipole-dipole interactions between different lattice
sites, which cannot be neglected due to the significant Bose
enhancement effect. Compared to the more conventional
solid-state magnetic materials, these long-range interactions
are highly controllable in the experiments, and the system of
spinor BECs in optical lattice is an exceedingly clean sys-
tem. This atomic system can provide us with a useful tool to
study the fundamental static and dynamic aspects of magne-
tism and lattice dynamics.
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