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Quantum phase transition of condensed bosons in optical lattices
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In this paper we study the superfluid–Mott-insulator phase transition of ultracold dilute gas of bosonic atoms
in an optical lattice by means of Green function method and Bogliubov transformation as well. The superfluid–
Mott-insulator phase transition condition is determined by the energy-band structure with an obvious interpre-
tation of the transition mechanism. Moreover the superfluid phase is explained explicitly from the energy
spectrum derived in terms of Bogliubov approach.
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I. INTRODUCTION

Ultracold bosons in an optical lattice provide a tunab
quantum system with variance of the potential depth a
lattice constant which can be achieved by adjusting the
rameters of the configuration of laser beams. Various qu
tum phenomena, for instance, Bloch oscillations, Wann
Stack ladders@1#, have been investigated in such a syst
which shares spatial periodicity with crystal lattice in soli
state physics, however is immune from scattering of impu
ties or phonons. The superfluid–Mott-insulator~SMI! phase
transition is one of the most significant quantum phenom
of condensate bosons in the optical lattice. A known ana
gous system exhibiting the SMI phase transition is liqu
helium with short-range repulsive interaction in periodic p
tential @2#. The atomic gas in Bose-Einstein condens
~BEC! subjected to the lattice potential which is turned
smoothly can be kept in the superfluid phase~SFP! as long as
the repulsive interaction between atoms is small with resp
to the tunnel coupling. With increase in the potential depth
the optical lattice it is getting more and more difficult fo
bosons to tunnel from one site to the other, and finally
system attends an insulator phase above a critical valu
the potential depth. Considerable attention has been pa
theoretical researches for understanding of the phase tr
tion and determining of the transition condition@3–8#, in
which the Bose-Hubbard model is introduced as the star
point of the theoretical studies@3#. The phase transition phe
nomena have also been observed experimentally in B
loaded in a three-dimensional optical lattice@3#. Using a
strong-coupling expansion in terms of the hopping te
called the decoupling approximation, which is as a matte
fact based on the mean-field method, van Oostenet al. have
obtained an analytic phase transition condition@see Eq.
~27!#. From an alternative viewpoint the phase transiti
condition can also be determined from the energy spect
of the system since the excitation spectrum is necess
gapless for the SFP while it has a finite gap for the M
insulator phase~MIP!. We in the present paper use both t
Green function method and Bogliubov approach to obt
the explicit excitation energy spectrum and hence to inve
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gate the SMI phase transition.
We begin with the following second-quantized Ham

tonian operator@3# for the system of bosonic atoms in th
optical lattice:

Ĥ5E dxĉ†~x!S 2
\2

2m
¹21V0~x!1VT~x! D ĉ~x!

1
g

2E dxĉ†~x!ĉ†~x!ĉ~x!ĉ~x!, ~1!

where ĉ(x) and ĉ†(x) denote the boson field operato
which obey the boson commutation relation

@ĉ~x!,ĉ†~x8!#5d~xÀx8!. ~2!

HereV0(x)5 ( j 51
3 Vj 0(x)sin2(2pxj /l) is the potential of the

optical lattice formed by the laser light of wavelengthl, and
hence the lattice constant isd5l/2. VT(x) denotes an exter
nal trap potential, and the interparticle interaction is appro
mated by the short-range potentialgd(x2x8), where g
54pas\

2/m is the coupling constant withas the s-wave
scattering length. Expanding the field operatorĉ(x) in the
Wannier basis such thatĉ(x)5( i âiw(x2xi), we obtain the
Bose-Hubbard model

Ĥ52J(
^ i , j &

âi
†â j1(

i
« i n̂i1

1

2
U(

i
n̂i~ n̂i21!, ~3!

whereâi is the annihilation operator of a particle at the la
tice sitei, which is assumed as being in a state described
the Wannier functionw(x2xi) of the lowest energy band
localized oni th site. This leads to the assumption that t
energy involved in the system is small compared to the
citation energies of the second band.xi denotes the position
of the i th local minimum of the optical potential andn̂i

5âi
†âi is the number operator. The annihilation and creat

operatorsâi and âi
† obey the canonical commutation rela

tions @ âi , âi
†] 5d i j . The parameterJ is the hopping matrix

element between adjacent sitesi and j, and is evaluated as
©2003 The American Physical Society05-1
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J52E dxw* ~x2xi !F2
\2

2m
¹21V0~x!Gw~x2xj !. ~4!

The energy offset of each lattice site,« i5*dxVT(x)uw(x
2xi)u2'VT(xi), is assumed to be of the same value« in the
present paper. The interparticle interaction is character
by the parameter

U5gE dxuw~x!u4. ~5!

For the sake of convenience we rewrite Hamiltonian~3!
in the following form:

Ĥ5Ĥ01
1

2
U(

i
n̂i~ n̂i21!, Ĥ05(

i , j
Ti j âi

†â j , ~6!

where

Ti j 5H « for i 5 j ,

2J i, j are nearest neighbors,

0 otherwise.

We see that the first part in Hamiltonian~6!, Ĥ0, is the same
as that of a simple lattice under tight-binding approximat
~TBA! in solid-state physics, so we can rewriteTi j as

Ti j 5Ns
21(

k
«~k!exp@ ik•~xi2xj !#, ~7!

wherek is the wave vector in the first Brillouin zone,Ns is
the total number of the lattice sites, and«(k) is the energy
spectrum of the HamiltonianĤ0. The inverse transformation
is written as

«~k!5Ns
21(

i , j
Ti j exp@2 ik•~xi2xj !# ~8!

and can be approximated by«(k)'«2(J/Ns)(^ i j & exp
@2ik•(xi2xj )# ~TBA energy band! in simple cubic lattice.
The explicit energy spectrum is seen to be

«~k!5«2JzcosS kl

2 D , ~9!

wherez is the number of nearest neighbors of each site.
The existence of a finite gap in the excitation spectrum

the characteristic of the MIP. In Sec. II we attempt to det
mine the SMI phase transition condition from the energ
band structure of the ultracold bosonic atoms in optical
tice in terms of Green function method. In Sec. III th
Bogliubov transformation is used to obtain exact ene
spectrum with which the superfluid phase is explained
plicitly.

II. GREEN FUNCTION APPROACH

We begin with the operatorsâi(t), â j
†(t8) in Heisenberg

picture, i.e., âi(t)5eiĤ tâie
2 iĤ t and â j

†(t8)5eiĤ t8â j
†e2 iĤ t8
04360
d

s
-
-
t-

y
-

~in the unit of \51). The retarded single-particle Gree
function at zero temperature@9# is defined by

^^âi~ t !; â j
†~ t8!&&52 iu~ t2t8!^@ âi~ t !, â j

†~ t8!#&

52 iu~ t2t8!$^âi~ t !â j
†~ t8!&

2^â j
†~ t8!âi~ t !&%, ~10!

whereu(t2t8) is the step function:

u~ t2t8!5H 1, t.t8

0, t,t8.

The Green function̂ ^âi(t); â j
†(t8)&& depends only on the

time difference (t2t8). The Fourier transformation of the
retarded Green function̂̂ âi(t); â j

†(0)&& is seen to be

Gi j ~v![^^âi uâ j
†&&v5

1

2pE2`

`

dt^^âi~ t !; â j
†~0!&&exp@ i ~v

1 ih!#, h510,

for a real frequencyv. Using Heisenberg equation, we ob
tain

vGi j ~v!5^@ âi ,â j
†#&1^^@ âi ,H#uâ j

†&&v , ~11!

which can be evaluated in terms of the commutation relat

@ âi ,Ĥ#5(
j

Ti j â j1Un̂i âi , ~12!

where ^ & denotes the ground-state expectation value. T
result is

vGi j ~v!5d i j 1(
m

TimGm j~v!1UG i j ~v!, ~13!

where

G i j ~v![^^n̂i âi uâ j
†&&v

is the higher-order Green function which satisfies the follo
ing equation

vG i j ~v!5^@ n̂i âi ,â j
†#&1^^@ n̂i âi ,Ĥ#uâ j

†&&v . ~14!

It is easy to find

@ n̂i âi ,Ĥ#5«n̂i âi1 (
j (Þ i )

Ti j n̂i â j1(
j

Ti j (âi
†â j2â j

†âi)âi

1Un̂i n̂i âi . ~15!

Substituting Eq.~15! into Eq. ~14!, we see that the obtaine
equation is not closed, because more higher order Gr
functions appear in the formula ofG i j (v). We in this stage
5-2
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use mean-field approximation for the underlined operator
Eq. ~15!, i.e., the number operatorn̂i is replaced by its ex-
pectation valuê n̂i&:

(
j

Ti j n̂i â j'(
j

Ti j ^n̂i&â j'n0(
j

Ti j â j . ~16!

In the above approximation we have assumed that the a
age occupation number of Bose atoms condensed on gr
state in each site of the optical lattice is the same, i.e.,^n̂i&
[n0.

Since the obvious symmetry of«(k)5«(2k), we have
the equalityTi j 5Tji according to Eq.~8!. Utilizing transla-
tion symmetry of the Bose system we moreover obtain

(
j

Ti j ~^âi
†â j&2^â j

†âi&!50. ~17!

Equation~15! is then simplified as

@ n̂i âi ,Ĥ#'~«1Un0!n̂i âi1n0 (
j (Þ i )

Ti j â j .

A closed equation for the Green function is seen to be

vG i j ~v!52n0d i j 1n0(
m

TimGi j ~v!1~«1Un0!G i j ~v!

~18!

from which we find

G i j ~v!5
n0

v2«2Un0
S 2d i j 1 (

m(Þ i )
TimGm j~v! D . ~19!

Substitution ofG i j (v) in Eq. ~19! into Eq. ~13! yields

vGi j ~v!5d i j 1(
m

TimGm j~v!

1
Un0

v2«2Un0
S 2d i j 1 (

m(Þ i )
TimGm j~v! D ,

~20!

which is the equation for the site space Green funct
Gi j (v). The Green functionGi j (v) is a function of the po-
sition difference (xi2xj ) of two sites only for a system with
translational invariance. Equation~20! for the Green function
Gi j (v) can be solved with the Fourier transformation.
this end we express the site space operatorâi in terms of the
wave-vector-space operatorâk as

âi5
1

ANs
(

k
eik•xi âk ,

âi
†5

1

ANs
(

k
e2 ik•xi âk

† . ~21!
04360
in

er-
nd

n

We can prove that the single-particle Green function in
Bloch representation is orthogonal, i.e.,

Gkk8~v![^^âkuâk8
† &&v

5
1

N (
i , j

e2 ik•xieik8•xj^^âi uâ j
†&&v

5d
kk8

Gk~v!,

where Gk(v)5^^âkuâk
†&&vdenotes the orthogonal Gree

function in Bloch representation. The Fourier transformat
of the Green functionGi j (v) is then seen to be

Gi j ~v!5
1

Ns
(

k
eik•(xi2xj )Gk~v!. ~22!

Substituting Eq.~22! into Eq. ~20! the single-particle Green
function in the Bloch representation is explicitly obtained

Gk~v!5
v2«1Un0

@v2«~k!#~v2«2Un0!2Un0@«~k!2«#
.

~23!

We can rewrite the solution in the following form:

Gk~v!5
Ak

(1)

v2E(1)
1

Ak
(2)

v2Ek
(2)

, ~24!

whereE(1) andEk
(2) denote the poles of the Green functio

Gk(v), and it is seen that the excitation spectrum posses
a band structure such as

E(1)5«, Ek
(2)5«~k!1Un0 . ~25!

The lowest band shrinks to a single level of zero bandwi
~see Fig. 1!. Although the energy spectrum Eq.~25! com-
prises two parts, they may, in a certain case depending on
relative values of the interatomic repulsionU and the tunnel
couplingJ, be merged into the same energy band. The ene
gap between the two bands is~Fig. 1!

FIG. 1. Excitation spectrum and energy gap.
5-3
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D5Ek
(2)uk502E(1)5Un02Jz.

When the constant of the interatomic repulsionU is large
with respect to the tunnel couplingJ such thatD.0, a gap
exists implying the MIP. With increase in tunnel couplingJ
the gap widthD decreases and finally the two energy ban
in the excitation spectrum overlap and the gap disappe
indicating the SFP. We then obtain the condition of S
phase transition that

D50, ~26!

namely,

U

zJ
5

1

n0
, ~27!

which agrees with the result in Refs.@2,8,10,11#.
To see the SFP more closely we take the zero wave-ve

limit of the energy bandEk
(2)(k→0),

Ek
(2);«2Jz1Un01

1

23
Jzl2k2.

Under the condition~27! at which the energy gap betwee
E(1) andEk

(2) disappears, we have a gapless Goldstone m
in the excitation spectrum such as

Eexc;
1

23
Jzl2k2, ~28!

which is different from the result of Bogoliubov theory fo
the system of weakly interacting bosons, in the absenc
the periodic potential, where the wave-vector dependenc
the excitation spectrum is linear in the zero wave-vector li
so that a nonvanishing velocity can exist. Strictly speak
what we obtained here is an ordinary fluid phase. The ene
spectrum of Eq.~25! determined with the help of Gree
function method is too simple to realize the superfluid ph
explicitly. This may be due to the particular procedure of t
approximation used in the above derivation. It is certainly
interest to study the spectrum of bosonic atoms in the B
trapped in the optical lattice in terms of Bogliubov method
see whether or not the system can possess a superfluid p
which we are going to discuss in the following section.

It is worthwhile to point out that when the interactio
between bosons vanishes, i.e.,U50, the Green function~23!
reduces to the well-known single band solution

Gk~v!uU505
1

v2«~k!
~29!

for bosons in a periodic potential.

III. BOGLIUBOV METHOD

Now we study the energy spectrum of boson atoms in
optical lattice by means of the Bogliubov method . Usi
relation~21!, Hamiltonian~6! can be converted into
04360
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Ĥ5(
k

«~k!âk
†âk1Ĥ int ,

Ĥ int5
U

2Ns
(

k,p,k,p
dk1p,k81p8âk8

† âp8
† âkâp . ~30!

Since the number of atoms condensed in the zero-momen
state is much larger than one, we haveâ0â0

†5â0
†â011.N0

@1, whereN0 is the total number of condensed atoms. Th
we can replace the operatorâ0 and â0

† with a ‘‘c’’ number
AN0. The interacting part of Hamiltonian~30! can be written
as ~in the order ofN0)

Ĥ int5
U

2Ns
N0

21
UN0

2Ns
(

k

8~ âkâ2k1âk
†â2k

† 12âk
†âk!

and the total Hamiltonian is

Ĥ5
UN0

2

2Ns
1N0~«2zJ!1(

k

8H Un0

2
~ âkâ2k1âk

†â2k
† !

1~«~k!1Un0!âk
†âkJ , ~31!

where(k8 denotes the sum with exclusion of the term ofk
50.

The following Bogoliubov transformation is introduced
order to diagonalize the Hamiltonian~31!:

b̂k5ukâk1vkâ2k
† ,

b̂k
†5ukâk

†1vkâ2k . ~32!

We require that the quasiboson operatorsb̂k and b̂k
† satisfy

the usual commutation relation@ b̂k , b̂k
†] 51 , which leads to

the condition

uk
22vk

251 ~33!

for the coefficientsuk andvk and then the Hamiltonian ca
be written as

Ĥ5Ec1Ĥ11Ĥ2 ,

where

Ec5 1
2 UN0n01N0~«2zJ! ~34!

is a constant and

Ĥ15(
k

8@~uk
21vk

2!~ «̄k1Un0!22Un0ukvk#b̂k
†b̂k ,

~35!
5-4
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Ĥ25(
k

8S Un0

2
~uk

21vk
2!2~ «̄k1Un0!ukvkD ~ b̂kb̂2k

1b̂k
†b̂2k

† !. ~36!

To eliminate the off-diagonal partĤ2 we require

Un0

2
~uk

21vk
2!2~ «̄k1Un0!ukvk50, ~37!

where«̄k5zJ@12cos(kd)#. Introducing a parameterfk such
that

uk5coshfk , vk5sinhfk ,

conditions~33! and ~37! lead to the useful relations

tanfk5
2ukvk

uk
21vk

2
5

Un0

«̄k1Un0

,

uk
21vk

25cosh~2fk!5
«̄k1Un0

Ek

with which the diagonalized Hamiltonian is obtained as

Ĥ5Ec1(
k

8

Ekb̂k
†b̂k ,

where the energy spectrumEk of quasiparticle is

Ek5A«̄k~ «̄k12Un0!. ~38!

The energy spectrum is different from that of Eq.~25! and is
typical for the superfluid. The energy gapDg of excitation
spectrum is obviously

Dg5
Ec2N0«

N0
5 1

2 Un02zJ. ~39!

The phase transition condition determined fromDg50 is

U

2zJ
5

1

n0
, ~40!

which shows a factor of 2 difference comparing with t
condition in Eq.~27!. This may be caused by the approxim
tion itself. When the energy gap disappears, i.e.,Dg50, the
dispersion relation ofEk(k→0) reads
on

ay

04360
Ek;~zJUn0d2!1/2k, ~41!

indicating explicitly the superfluidity in agreement with th
Bogliubov superfluid theory for weakly interacting bosons
the absence of the periodic potential. The linear wave-ve
dependence of the excitation spectrumEk @unlike the ordi-
nary fluid ~28! whereEexc is proportional tok2] is the char-
acteristic of the superfluid which gives rise to a persist
velocity of superfluid or quasiparticle found as

vs5S ]Ek

]k D
k→0

5~zJUn0d2!1/2. ~42!

For the case of boson atoms with repulsive interactionas
.0), the parametersJ and U are positive andvs is a real
number which implies a persistent current. The velocityvs
can be controlled by the tuning of laser lights which result
the optical lattice. As seen from the definitions~4! and~5! for
J andU, both these parameters depend on the Wannier fu
tions which are essentially determined by the potential
optical lattice. Therefore,J andU are not independently tun
able by the adjusting of the laser parameters. In fact when
depth of the lattice potential increases, the hopping ma
elementJ decreases exponentially while the matrix eleme
of the on-site interaction,U, increases. We thereby expe
that there exist a maximum value of the persistent velocityvs
in some particular values ofJ andU.

IV. CONCLUSION

We have studied the Bose-Hubbard model of BE
trapped in a periodic potential in terms of Green functi
method and Bogliubov transformation as well. The conditi
of phase transition between SFP and MIP is determined
the energy-band structure of the excitation spectrum due
obviously, the competition between the interatomic repuls
and the tunnel coupling. Our result agrees with the condit
of SMI phase transition obtained in the literature. The S
property of BEC in the optical lattice is explained explicit
from energy spectrum derived by means of the Bogliub
approach. It is shown that the persistent velocity of the q
siparticle in SFP can be tuned by the adjusting of the la
lights which result in the optical lattice.
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