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Quantum phase transition of condensed bosons in optical lattices
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In this paper we study the superfluid—Mott-insulator phase transition of ultracold dilute gas of bosonic atoms
in an optical lattice by means of Green function method and Bogliubov transformation as well. The superfluid—
Mott-insulator phase transition condition is determined by the energy-band structure with an obvious interpre-
tation of the transition mechanism. Moreover the superfluid phase is explained explicitly from the energy
spectrum derived in terms of Bogliubov approach.

DOI: 10.1103/PhysRevA.68.043605 PACS nuntder03.75.Lm, 67.40-w, 39.25:+k

I. INTRODUCTION gate the SMI phase transition.
We begin with the following second-quantized Hamil-
Ultracold bosons in an optical lattice provide a tunabletonian operatof3] for the system of bosonic atoms in the
quantum system with variance of the potential depth andptical lattice:
lattice constant which can be achieved by adjusting the pa-
rameters of the configuration of laser beams. Various quan- . - h? A
tum phenomena, for instance, Bloch oscillations, Wannier- H:f Xm//T(X)( _ﬁV2+VO(X)+VT(X) H(X)
Stack ladderg1], have been investigated in such a system
which shares spatial periodicity with crystal lattice in solid- g T ST
state physics, however is immune from scattering of impuri- + §f dxgp () ¢ () h(X) (), @)
ties or phonons. The superfluid—Mott-insulat&MI) phase
transition is one of the most significant quantum phenomena - ~ s ,
of condensate bosons in the optical lattice. A known analoWhere ¢(x) and ¢'(x) denote the boson field operators
gous system exhibiting the SMI phase transition is liquidhich obey the boson commutation relation
helium with short-range repulsive interaction in periodic po-
tential [2]. The atomic gas in Bose-Einstein condensate [(}(x),l}*(xf)]zg(x—xf)_ 2
(BEC) subjected to the lattice potential which is turned on
oY a6 K (1 SUPedPUSER o071 2 ereVo()— 33V sz ) i the potenial of e
P P ptical lattice formed by the laser light of wavelengthand

to the tunnel coupling. With increase in the potential depth Of ence the lattice constantds= /2. V(x) denotes an exter-

the optical lattice it is getting more and more difficult for : X A N .
- . nal trap potential, and the interparticle interaction is approxi-
bosons to tunnel from one site to the other, and finally the ) ]
ated by the short-range potentigh(x—x"), where g

system attends an insulator phase above a critical value 6}‘4 52/m is th i it th
the potential depth. Considerable attention has been paid to Was, m is the coup '_ng const.ant wit sAt € §-wave
theoretical researches for understanding of the phase trangicattering length. Expanding the field operait(ix) in the
tion and determining of the transition conditig8—8|, in  Wannier basis such that(x) =X;a;w(x—x;), we obtain the
which the Bose-Hubbard model is introduced as the startinggose-Hubbard model

point of the theoretical studi¢8]. The phase transition phe-
nomena have also been observed experimentally in BEC
loaded in a three-dimensional optical lattif®]. Using a
strong-coupling expansion in terms of the hopping term
called the decoupling approximation, which is as a matter of A
fact based on the mean-field method, van Oosteal. have  wherea; is the annihilation operator of a particle at the lat-
obtained an analytic phase transition conditisee Eq. tice sitei, which is assumed as being in a state described by
(27)]. From an alternative viewpoint the phase transitionthe Wannier functionw(x—x;) of the lowest energy band
condition can also be determined from the energy spectrurtocalized onith site. This leads to the assumption that the
of the system since the excitation spectrum is necessarilgnergy involved in the system is small compared to the ex-
gapless for the SFP while it has a finite gap for the Mottcitation energies of the second bamgdenotes the position

insulator phas¢MIP). We in the present paper use both the ot the jth local minimum of the optical potential and,

Green function method and Bogliubov approach to Obtam:ATéq is the number operator. The annihilation and creation

the explicit excitation energy spectrum and hence to investi- ~ ~t ] )
operatorsa; and a; obey the canonical commutation rela-

tions[a;, a/]=&;. The parameted is the hopping matrix
*Electronic address: liangjj929@yahoo.com.cn element between adjacent siieandj, and is evaluated as
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h2 ) (in the unit of A=1). The retarded single-particle Green

JZ—f dxw* (X—Xx;) “om Y Vo) |WX=Xj). (4)  function at zero temperatufé] is defined by
The energy offset of each lattice site;=[dxV(x)|w(x (ai(t); af(t)))=—ie(t—t"){[a(t), af(t')])
—x;)|?~V+(x;), is assumed to be of the same valuin the ) Com
present paper. The interparticle interaction is characterized =—io(t—t"){{ai(t)aj(t"))
by the parameter At n

—(af(tha(1)}, (10)
UZQJ dx|w(x)|*. (5)  whereg(t—t') is the step function:

For the sake of convenience we rewrite Hamilton{@n N 1, t>t

in the following form: o(t—t')= 0, t<t’.

|2|:|2|0+%U2 n(fi—1), Fo=> Tyala;, (6) The Green function(a(t); a/(t'))) depends only on the
! R time difference {—t’). The Fourier transformation of the

where retarded Green functio({a;(t); a/(0))) is seen to be
. for i=], e Lo .
. _ Gij(w)=<<ai|aj>>w=2— dt((a(t); a;(0)))exfi(w
Tij= —J i,j are nearest neighbors, TJ—e
0 otherwise. +in)], n=+0,

We see that the first part in Hamiltoni&8), H,, is the same for a real frequencyw. Using Heisenberg equation, we ob-
as that of a simple lattice under tight-binding approximationtain
(TBA) in solid-state physics, so we can rewritg as
wGjj(0)=([a a])+(([a Hlla),, 1D
Ti=N_1D, e(kexdik- (x—x)], 7
N s 2k (exrik-06=x)] @) which can be evaluated in terms of the commutation relation

wherek is the wave vector in the first Brillouin zon#l is

the total number of the lattice sites, an(k) is the energy [a;,H]=2 Tya+Una;, (12
spectrum of the Hamiltoniaﬁo. The inverse transformation ]
is written as where () denotes the ground-state expectation value. The
result is
s(k)=Ns_1i2j Tijexd —ik-(x—x))] (8)

wGij(w)=5ij+2 Timej(w)+UFij(w), (13)
and can be approximated by(k)~e—(J/Ng)Zj, exp m
[—ik-(xi—x%;)] (TBA energy bangin simple cubic lattice.

The explicit energy spectrum is seen to be where

Ty (@) =((Ra|a]
8(k):8_moﬂ(k7x), o i(@)=((n&a)),
is the higher-order Green function which satisfies the follow-

wherez is the number of nearest neighbors of each site.  ing equation

The existence of a finite gap in the excitation spectrum is
the characteristic of the MIP. In Sec. Il we attempt to deter- ol ()=([ma;,a ) +([mva; H1la)),. (14
mine the SMI phase transition condition from the energy-
band structure of the ultracold bosonic atoms in optical latdt is easy to find
tice in terms of Green function method. In Sec. Il the
Bogliubov transformation is used to obtain exact ener An o A a ~ N
spe?ctrum with which the superfluid phase is explained egg [niay ’H]:sniai+j;) Tiiﬁaﬁzj: Tii(aiTaJ_a;rai)ai
plicitly.

+Unn;a; . (15)
Il. GREEN FUNCTION APPROACH -
. . Substituting Eq(15) into Eq. (14), we see that the obtained

We begin with the operatora(t), a/(t') in Heisenberg equation is not closed, because more higher order Green

picture, i.e.,a;(t)=€"'a;e Mt and af(t")=e""ale ™" functions appear in the formula &F;(w). We in this stage
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use mean-field approximation for the underlined operators in E(k)
Eq. (15), i.e., the number operatar, is replaced by its ex- E®

pectation valugn;):

In the above approximation we have assumed that the avet
age occupation number of Bose atoms condensed on groun

—

state in each site of the optical lattice is the same, (rg),
Eno.

Since the obvious symmetry ef(k)=¢(—k), we have
the equalityT;;=T;; according to Eq(8). Utilizing transla-
tion symmetry of the Bose system we moreover obtain

S T (3la) ~(fan -0, @

Equation(15) is then simplified as
[ﬁié-i ,H]’\"’(S"‘ Uno)ﬁiéi + noj;) T”é.J .
A closed equation for the Green function is seen to be

olj(0)=2n08;;+ N>, TimGij(@)+(e+Ung)Tji(w)
(18)

from which we find

No

rij(w):m(zaﬁmgi) Timej(w)). (19)
Substitution of'j;(w) in Eq. (19) into Eq. (13) yields

wGij (w) = 5ij + E Timej(w)

" ¢

k

—m/a 0 m/a
FIG. 1. Excitation spectrum and energy gap.

We can prove that the single-particle Green function in the
Bloch representation is orthogonal, i.e.,

Gkk/(w)E«éklé-l'))w
1 —ik-Xaik" X //a |AT
ZNZJ_G e (@)
=5, Gilw),
where G (w)=((a,a})),denotes the orthogonal Green

function in Bloch representation. The Fourier transformation
of the Green functiors;;(w) is then seen to be

Gij(w):NiSEk e iT9IG(w). (22)

Substituting Eq(22) into Eq. (20) the single-particle Green
function in the Bloch representation is explicitly obtained as

w—e+Ung

G = .

Un, @) = e (k) ](w—e—Ung)—Ungle(K)—e]
9 (925 . . 23
w—s—Un0(25"+m(2¢i) TImej(w))i (23

(20) We can rewrite the solution in the following form:
. . . . . AL Al2)
which is the equation for the site space Green function Gu(w)= ko k (24)
Gjj(w). The Green functiois;;(w) is a function of the po- K w—E®  4H— E(kZ)’

sition difference k; —x;) of two sites only for a system with
translational mvanance Equati¢®0) for the Green function whereE®") and E(z) denote the poles of the Green function
Gjj(w) can be solved with the Fourier transformation. ToG,(w), and it is seen that the excitation spectrum possesses

this end we express the site space operatin terms of the @ band structure such as

wave-vector-space operatag as EW=g, E@=e(k)+Un,. 25
ai_i S eikxig, | The lowest band shrinks to a single level of zero bandwidth
INg % (see Fig. 1 Although the energy spectrum ER5) com-
prises two parts, they may, in a certain case depending on the
1 relative values of the interatomic repulsibhand the tunnel
—— Z e ' XIa . (21 couplingJ, be merged into the same energy band. The energy
\/N—s K gap between the two bands(i8ig. 1)
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A=E@|—o—E®=Uny—Jz . AU
o 0 H=% e(K)aja,+ Fin,

When the constant of the interatomic repulsidnis large

with respect to the tunnel couplinsuch thatA>0, a gap

exists implying the MIP. With increase in tunnel couplidg o = U E s atat aa (30)

the gap widthA decreases and finally the two energy bands M 2Ng kg p KPP Sk Gpr Skp

in the excitation spectrum overlap and the gap disappears,

indicating the SFP. We then obtain the condition of SMlgjnce the number of atoms condensed in the zero-momentum
phase transition that . A g o~gn
state is much larger than one, we haga,=aga,+1=Nj

A=0, (26)  >1, whereNy is the total number of condensed atoms. Thus,
we can replace the operaté5 and ég with a “c” number
namely, JN,. The interacting part of Hamiltonia@0) can be written
as(in the order ofNg)
u 1 27
ZJ no’ |:| U N2_|,_UNO E/(A ~ +ATAT +2ATA )
= — a@a_taa a,a
which agrees with the result in Ref®,8,10,11. MT2Ng 07 2Ng § KTk KTk kK
To see the SFP more closely we take the zero wave-vector
limit of the energy bandE{?)(k—0), and the total Hamiltonian is
E®)~e—Jz+Un Jri\]z)\zk2 N UN /[Uno - o afat
k 0 23 : H—2—’\15+N0(8—Z\])+2k T(aka_kJraka_k)
Under the condition27) at which the energy gap between apa
E® andE(? disappears, we have a gapless Goldstone mode +(e(k)+Ung)aay ., (31)

in the excitation spectrum such as
1 where X, denotes the sum with exclusion of the termkof
Eexc™ _‘]Z)\zkz- (28 =0. . . . L. .
23 The following Bogoliubov transformation is introduced in
order to diagonalize the HamiltonidB1):
which is different from the result of Bogoliubov theory for
the system of weakly interacting bosons, in the absence of b
the periodic potential, where the wave-vector dependence of
the excitation spectrum is linear in the zero wave-vector limit bi=ual+v.a_y. (32
so that a nonvanishing velocity can exist. Strictly speaking
what we obtained here is an ordinary fluid phase. The ener . . - - .
spectrum of Eq.(25 determined with the help of Green %e require that the quaS|bosc3n oAperatbgaand bl satisfy
function method is too simple to realize the superfluid phaséhe usual commutation relatigiby, bf]=1 , which leads to
explicitly. This may be due to the particular procedure of thethe condition
approximation used in the above derivation. It is certainly of
interest to study the spectrum of bosonic atoms in the BEC Ui—vi=1 (33
trapped in the optical lattice in terms of Bogliubov method to
see whether or not the system can possess a superfluid phage he coefficientsu, andv, and then the Hamiltonian can
Wh|ch we are going to dl_scuss in the following section.  pa written as
It is worthwhile to point out that when the interaction
between bosons vanishes, ild+ 0, the Green functiof23) . P
reduces to the well-known single band solution H=Ec+Hi+Hy,

K= Ukak+Ukaik,

G 1 29 where
k(w)|u:o—w_8(k) ( )

E.=3UNgng+No(e —2J) (34
for bosons in a periodic potential.

is a constant and
11l. BOGLIUBOV METHOD

Now we study the energy spectrum of boson atomsinthe 1 —S''r(24 ,2) (G4 Uns) — 2Uneuwo 161D
optical lattice by means of the Bogliubov method . Using ! ; (it vid (e o) ok Ibkbi
relation21), Hamiltonian(6) can be converted into (35
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. /[ Ung — -
HZZEK T(uﬁ%—vﬁ)—(sk-l-Uno)ukvk (bkbfk

+bb’,). (36)
To eliminate the off-diagonal paf, we require
Ung 2, .2 - _
— (U + 0P = (4t Ung U =0, (37)

wheres_kzzJ[l—coskd)]. Introducing a parametep, such

that
ug=coshegy, vy =sinh¢y,

conditions(33) and (37) lead to the useful relations

ZUkUk Uno
tangy=———== :
Uk+Uk 8k+Un0
e +Ung
Ug+og=costi2g) = ——
k

with which the diagonalized Hamiltonian is obtained as

!

|:| = EC+ 2 EKBEBK!
k

where the energy spectrul) of quasiparticle is

Ex= Ver(e+2Ung).

The energy spectrum is different from that of E&5) and is
typical for the superfluid. The energy gay, of excitation
spectrum is obviously

(38)

E.—Nge
A =—S 0%

=N (39

The phase transition condition determined frag=0 is

U 1

223 g’ (40)

which shows a factor of 2 difference comparing with the

PHYSICAL REVIEW &8, 043605 (2003

Ex~(zIUnyd?) Y%, (41)

indicating explicitly the superfluidity in agreement with the
Bogliubov superfluid theory for weakly interacting bosons in
the absence of the periodic potential. The linear wave-vector
dependence of the excitation spectrlip [unlike the ordi-
nary fluid (28) whereE,,. is proportional tok?] is the char-
acteristic of the superfluid which gives rise to a persistent
velocity of superfluid or quasiparticle found as

JIE,
K

Us= (42)

) =(zJUnyd?)*2
k—0

For the case of boson atoms with repulsive interactiagn (
>0), the parameterd and U are positive and is a real
number which implies a persistent current. The velooity
can be controlled by the tuning of laser lights which result in
the optical lattice. As seen from the definitiogds and(5) for
JandU, both these parameters depend on the Wannier func-
tions which are essentially determined by the potential of
optical lattice. Therefore] andU are not independently tun-
able by the adjusting of the laser parameters. In fact when the
depth of the lattice potential increases, the hopping matrix
element] decreases exponentially while the matrix element
of the on-site interactionlJ, increases. We thereby expect
that there exist a maximum value of the persistent velacity

in some particular values dfandU.

IV. CONCLUSION

We have studied the Bose-Hubbard model of BEC
trapped in a periodic potential in terms of Green function
method and Bogliubov transformation as well. The condition
of phase transition between SFP and MIP is determined by
the energy-band structure of the excitation spectrum due to,
obviously, the competition between the interatomic repulsion
and the tunnel coupling. Our result agrees with the condition
of SMI phase transition obtained in the literature. The SFP
property of BEC in the optical lattice is explained explicitly
from energy spectrum derived by means of the Bogliubov
approach. It is shown that the persistent velocity of the qua-
siparticle in SFP can be tuned by the adjusting of the laser
lights which result in the optical lattice.
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