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Extensive research has been lavished on the effects of spin-orbit couplings (SOCs) in attractively interacting
Fermi systems in both neutral cold-atom systems and condensed-matter systems. Recently, it was suggested that
a SOC drives a class of BCS to Bose-Einstein condensate (BEC) crossover that is different from the conventional
one without a SOC. Here, we explore what are the most relevant physical quantities to describe such a BCS to BEC
crossover and their experimental detections. We extend the concepts of the coherence length and “Cooper-pair
size” in the absence of SOC to Fermi systems with SOC. We investigate the dependence of chemical potential,
coherence length, and Cooper-pair size on the SOC strength and the scattering length at three dimensions (3D)
(the bound-state energy at 2D) for three attractively interacting Fermi gases with 3D Rashba, 3D Weyl, and 2D
Rashba SOC, respectively. We show that only the coherence length can be used to characterize this BCS to BEC
crossover. Furthermore, it is the only length which can be directly measured by radio-frequency dissociation
spectra type of experiments. We stress crucial differences among the coherence length, Cooper-pair size, and the
two-body bound-state size. Our results provide the fundamental and global picture of the BCS to BEC crossover
and its experimental detections in various cold-atom and condensed-matter systems.
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I. INTRODUCTION

Spin-orbit coupling (SOC) has played important roles in
various condensed-matter systems, such as anomalous Hall
effects [1], noncentrosymmetric superconductors with lifted
spin degeneracy [2], and exciton superfluids in electron-hole
semiconductor bilayers [3,4]. Recently, the investigation and
control of SOC have become subjects of intensive research
after the discovery of the topological insulators [5,6]. For
example, the SOC is a critical determining factor leading to
an additional class of electronic states [7], such as various
spin-orbital ordered states, spin liquids, various topological
phases, etc. The one-dimensional (1D) SOC which is a linear
combination of Rashba and Dresselhauss SOC has been
successfully generated in several experimental groups for
neutral atoms both in Bose and Fermi gas [8–11]. Possible
experimental constructions of 2D Rashba or Dresselhauss
SOC and 3D Weyl SOC have also been proposed [12,13].
There are also extensive theoretical investigations on various
important effects of SOC on attractively interacting [14–17]
degenerate Fermi gases across BCS to Bose-Einstein con-
densate (BEC) crossover. Collective excitations above the
mean-field states have also been calculated in [18–21]. The
collective modes and magnetic transitions in repulsively
interacting Fermi gas have been investigated [22,23]. Recently,
both staggered [24] and uniform [25] artificial magnetic fields
have been generated in optical lattices. Scaling functions
for various gauge-invariant and non-gauge-invariant quantities
across topological transitions driven by the SOC on an optical
lattice have been derived [26]. In particular, it was also stressed
in [26] that in contrast to condensed-matter experiments
where only gauge-invariant quantities can be measured, both
gauge-invariant and non-gauge-invariant quantities can be
measured by experimentally generating various non-Abelian
gauges corresponding to the same set of Wilson loops. The

interplay among the SOC, interactions, and lattice geometries
leading to a different quantum phase, excitation spectrum, and
quantum phase transitions has also been explored [27].

The BCS to BEC crossover is a longstanding problem
in both condensed matter [28,29] and cold atoms [30].
Conventional superconductors are well inside the BCS limit,
so mean-field theory works well [28,29]. Due to its short
coherence ξ , high-temperature superconductors are near the
BCS to BEC crossover, but still in the BCS side with a
well-defined Fermi surface [29,31], so quantum fluctuation
effects are large. The BCS to BEC crossover of exciton
superfluids in an electron-hole semiconductor bilayer can
be tuned by the exciton density [32–35]. The BCS to BEC
crossovers of attractively interacting neutral fermions are tuned
by sweeping across a Feshbach resonance [30]. The effects of
SOC on the BCS to BEC crossover have been investigated
by several groups [14–17]. In particular, the authors in [15]
found that when the SOC strength is well beyond the value of
the topological Lifshitz transition of the noninteracting Fermi
surfaces [23,26], the overlap between the two-body wave
function [14,28] and the “Cooper-pair wave function” [36] (see
Sec. II B for its definition) approaches 1. So they concluded
that at a fixed scattering length at the BCS side (in the absence
of SOC), the SOC drives a BCS to BEC crossover which is
in a different class than the one without a SOC driven by the
exciton density [32–35] or Feshbach resonance [30]. However,
as shown in this paper, the Cooper-pair wave function is useful
for illustration purposes only instead of being physical, so its
overlap with the two-body wave function is not physical and
cannot be measured experimentally. In order to describe the
SOC-driven BCS to BEC crossover, it is important to identify
and compute the most relevant physical quantity to describe
such a BCS to BEC crossover and then address its experimental
detections.
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In this paper, we address this outstanding problem by inves-
tigating three spin-orbit-coupled Fermi gases: (1) a 3D Fermi
gas with a Rashba SOC, (2) a 3D Fermi gas with a isotropic
Weyl SOC, and (3) a 2D Fermi gas with a Rashba SOC. We
first extend the concepts of the coherence length associated
with a many-body wave function [28,29,37] and “Cooper-pair
size” [36] associated with a Cooper-pair wave function in the
absence of SOC to Fermi systems with a SOC. The three
systems have different symmetries: the [U(1)spin × U(1)orbit]D
symmetry at 3D where the D means the spontaneous rota-
tion in spin and orbital space, the [SU(2)spin × SO(3)orbit]D
symmetry at 3D, and the [U(1)spin × U(1)orbit]D symmetry at
2D, respectively. These symmetries determine the number of
independent coherence lengths and Cooper-pair sizes to be
2, 1, and 1, respectively. We then study the dependence of
chemical potential, coherence length, and Cooper-pair size on
the SOC strength λ for three attractively interacting Fermi
gases. We show that from the BCS side at λ = 0, as the
SOC strength increases, the chemical potential drops below the
bottom of the single-particle spectrum μ0 = − λ2

2m
, so it can be

used to qualitatively characterize the BCS to BEC crossovers
driven by the SOC strength. The coherence length decreases
monotonically and quickly below the interparticle spacing, and
so it can be used to quantitatively characterize the BCS to BEC
crossovers. Furthermore, the coherence length can be directly
measured by using radio-frequency dissociation spectra type of
experiments [38] as soon as the 2D and 3D SOC can be realized
experimentally. In sharp contrast, the Cooper-pair size used in
the previous work [14–16] shows nonmonotonic behaviors, so
it may not be used to characterize the BCS to BEC crossover
even qualitatively. Furthermore, it is not an experimentally
measurable quantity. Starting from the BEC side at λ = 0, the
effects of SOC are small; both the coherence length and the
Cooper-pair size converge to the two-body bound-state size
[14,28]. We conclude that the coherence length is a much
more robust concept than the Cooper-pair size; it is also the
only experimentally detectable physical quantity which can be
used to describe the BCS to BEC crossover even quantitatively.
We also discuss relations among the many-body BCS wave
functions, the Cooper-pair wave functions, and the two-body
wave functions, and therefore stress crucial differences among
the coherence length, Cooper-pair size, and the two-body
bound-state size. The results provide a solid foundation for
the fundamental physics of the SOC-driven BCS to BEC
crossover and its experimental detections. Our results should
also shed considerable light on condensed-matter systems
such as 2D exciton superfluids and 2D noncentrosymmetric
superconductors.

The rest of the paper is organized as follows: In Sec. II, we
first review the different definitions and concepts of coherence
length and Cooper-pair size, then extend these concepts to
a SOC system where the spin is not a conserved quantity.
In Sec. III, for a 3D Rashba system, we study how the
chemical potential, the coherence length, and the Cooper-pair
size change as the SOC strength increases, and we especially
focus on their behaviors across the SOC-driven BCS to BEC
crossover driven by the SOC strength. To be complete, we
also study how the the coherence length and the Cooper-pair
size change with the scattering lengths at fixed SOC strengths.
We also discuss the crucial differences among the coherence

length, Cooper-pair size, and two-body bound-state size. In
Sec. IV, we compute the same quantities on 3D Fermi gas
with an isotropic Weyl SOC. In Sec. V, we perform similar
calculations on 2D Fermi gas with Rashba SOC, which needs
a different regularization than the two 3D systems discussed
in the previous two sections. In Sec. VI, we discuss the
implications of the results achieved in the previous sections,
especially in Sec. V, on several condensed-matter systems.
We summarize the main results and discuss several exciting
perspectives in Sec. VII. In the following and also in all the
figures, we set � = 1.

II. EXTEND PAIRING LENGTH AND COOPER-PAIR SIZE
TO SOC SYSTEMS

We consider a homogeneous Fermi gas with an attractive
contact potential,

H =
∑

p,σ=↑,↓
c†pσ

(
p2

2m
− μ

)
c pσ + Vsoc

+ g

V

∑
p,q,s

c
†
s
2 + p↑c

†
s
2 − p↓c s

2 −q↓c s
2 +q↑, (1)

where d = 2,3, and Vsoc is the spin-orbit coupling (SOC) term
which can be Rashba type, −iλ(∂xσx + ∂yσy), or a 3D Weyl
isotropic SOC, λ�k · �σ .

It is known that the interaction g needs to be regularized
differently in 2D and 3D. In 3D, the g can be regularized by
the s-wave scattering length as : 1

g
= m

4πas
− 1

V

∑
p

1
2ε p

where

V is the volume of the system and ε p = p2

2m
is the free-particle

dispersion. In 2D, the g can be regularized by the two-body
binding energy εB : 1

g
= − 1

V

∑
p

1
2ε p+εB

.

By introducing the order parameter � = g

V

∑
p〈c− p↓c p↑〉,

one can reduce the interaction term to the mean-field form:
H MF

int = ∑
p(�∗c− p↓c p↑ + �c

†
p↑c

†
− p↓) − V |�|2

g
. The chemi-

cal potential μ and the order parameter � can be de-
termined by two self-consistent equations: the number
equation n = 1

V

∑
p,σ

〈c†pσ c pσ 〉MF and the gap equation � =
g

V

∑
p〈c− p↓c p↑〉MF.

Without SOC, the coherence length has been calculated
in Fermi gas across the whole BCS to BEC crossover tuned
by Feshbach resonance in [37]. Most importantly, it has
been measured using radio-frequency dissociation spectra
throughout the whole BCS to BEC crossover in [38]. However,
the effects of SOC on the pairing correlation lengths have not
been studied. In this section, we first review the definition and
concepts of the coherence length without SOC, then extend to
the SOC case.

A. Coherence length

For a spin-singlet superfluid without SOC, the fermion pair
correlation functions are defined as

ψ(�r) = 1

n2
〈c†↑(�r)c†↓(0)c↓(0)c↑(�r)〉 − 1

4
, (2)

where n is the particle density and the average is taken with
respect to the BCS ground state |
〉 = |BCS〉 (in the second
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quantized form),

|
〉 = ��k(u�k + v�kc
†
�k↑c

†
−�k↓)|0〉

= (��ku�k)��k

(
1 + v�k

u�k
c
†
�k↑c

†
−�k↓

)
|0〉

= (��ku�k)exp

⎡
⎣∑

�k

v�k
u�k

c
†
�k↑c

†
−�k↓

⎤
⎦ |0〉, (3)

which obviously hosts an indefinite number of fermions. Its
first quantized form was discussed in [28].

The coherence length is defined as [37,38]

ξ 2
c =

∫
d�rψ(�r)r2∫
d�rψ(�r)

. (4)

At the mean-field level, Eq. (2) reduces to

ψ(�r) = 1

n2
|〈
|c†↑(�r)c†↓(0)|
〉|2, (5)

where |
〉 = |BCS〉.
Under the mean-field approximation, Eq. (4) can be

rewritten as [38]

ξ 2
c = 〈ψαβ |r2|ψαβ〉

〈ψαβ |ψαβ〉 , (6)

where ψαβ(�r) = 〈
|c†α(�r)c†β(0)|
〉 with α = ↑,β = ↓.

The Fourier transform of Eq. (6) to �k space leads to

ξ 2
c =

〈ψαβ |∇2
�k |ψαβ〉

〈ψαβ |ψαβ〉 , α = ↑,β = ↓, (7)

where ψαβ(�k) = 〈
|c†α(�k)c†β(−�k)|
〉 is the Fourier transform
of ψαβ (�r) with α = ↑,β = ↓. More straightforwardly, Eq. (6)
in real space and Eq. (7) in momentum space are Fourier
transformed to each other.

For a BEC to BCS crossover without SOC, the only pair-
ing is the singlet pairing so ψ↑↓(�k) = 〈
|c†↑(�k)c†↓(−�k)|
〉 =
u�kv�k = �0

2E�k
, which is given and shown in Fig. 3 in [37].

It is important to point out that Eqs. (2) and (4) hold in
general, while Eqs. (5) and (6) hold only at the mean-field level.
Only at the mean-field level can one “intuitively” interpret Eqs.
(5) and (6) as the expectation value of r2 over the “pairing
wave function” ψαβ(�r) = 〈
|c†α(�r)c†β(0)|
〉 with α = ↑,β =
↓. Although the concept of coherence length given by Eq. (4)
holds in general, such a wave-function interpretation breaks
down beyond the mean field.

In the presence of SOC, due to the nonconservation of spins,
one needs to average over all the spin components to define
the fermion pair correlation functions; so Eq. (2) should be
replaced by

ψ(�r) = 1

n2

∑
α,β

〈c†α(�r)c†β(0)cβ(0)cα(�r)〉 − 1, (8)

where n is the particle density. Equation (4) remains.

At the mean-field level, following the steps to derive Eqs. (5)
and (6) leads to the coherence length in the presence of SOC,

ξ 2
i =

∑
�k,α,β〈ψαβ |∂2

ki
|ψαβ〉∑

�k,α,β〈ψαβ |ψαβ〉 , α,β = ↑,↓, (9)

which could be measured by radio-frequency dissociation
spectra used in the experiment [38] in the presence of
SOC. After the spin sum, the orbital symmetry of the
U(1)orbit,O(3)orbit,U(1)orbit of the three systems to be discussed
in the following three sections will be recovered. However, one
still needs to distinguish the pairing correlation length within
the xy plane and along the z direction, ξ 2

xy 	= ξ 2
z , in the first

and third systems.

B. Cooper-pair size

In fact, one can also define the Cooper-pair size through the
Cooper-pair wave function [28,39]. Removing the exponential
in the normalized BCS wave function without SOC in Eq. (3)
leads to the singlet Cooper-pair wave function in the second
quantized form,

|gcp〉 =
∑

�k

v�k
u�k

c
†
�k↑c

†
−�k↓|0〉, (10)

which hosts only two paired fermions. It can be understood as
the two electron components of the many-body wave function.

One can extract the Cooper-pair wave function in the real
space in the first quantization,

gcp(�r) = g↑↓(�r)(|↑↓〉 − |↓↑〉), g↑↓(�r) =
∑

�k
ei�k·�r v�k

u�k
. (11)

It is necessary to point out that this Cooper-pair wave function
is different from the original pairing problem of two fermions
near a Fermi surface first achieved by Cooper by solving the
Schrödinger equation [28].

The Cooper-pair size [36] is defined by [28,39]

l2
pair =

∫
d�r|g↑↓(�r)|2r2∫
d�r|g↑↓(�r)|2 = 〈gcp|r2|gcp〉

〈gcp|gcp〉 . (12)

The Fourier transform of Eq. (12) to �k space leads to

l2
pair =

〈gαβ |∇2
�k |gαβ〉

〈gαβ |gαβ〉 , α = ↑,β = ↓, (13)

where g↑↓(�k) = v�k
u�k

is the Fourier transform of g↑↓(�r). This

should be contrasted with ψ↑↓(�k) = 〈
|c†↑(�k)c†↓(−�k)|
〉 =
u�kv�k = �0

2E�k
used in Eq. (7).

It is important to point out that Eqs. (3) and (11)–(13)
hold only in the mean-field level. Only at the mean-field
level can one intuitively interpret Eqs. (12) and (13) as the
expectation value of r2 over the Cooper-pair wave function
given by Eq. (11). However, the concept of Cooper-pair size,
given by Eq. (13), breaks down beyond the mean-field theory.

In the presence of SOC, after writing the mean-field ground
state in the form |BCS〉SOC ∝ exp[

∑
�k gαβ(�k)c†�kα

c
†
−�kβ

]|0〉, one
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can extract the Cooper-pair size [28,39] as

l2
i =

∑
�k,α,β〈gαβ |∂2

ki
|gαβ〉∑

�k,α,β〈gαβ |gαβ〉 , α,β = ↑,↓, (14)

where the average over all the spin components is performed.
Note that gαβ(�k) is very different from φαβ(�k), so we may
expect quite different behaviors from the two lengths. These
will be explicitly demonstrated in the following sections. It is
the coherence length which is measured in [38].

In the following, we apply the formalism to the 3D Rashba
SOC, 3D Weyl SOC, and 2D Rashba SOC systems.

III. 3D FERMI GAS WITH A RASHBA SOC

The 3D Rashba SOC V3D−ra = −iλ(∂xσx + ∂yσy) can be
written in the second quantization form,

V3D−ra = λ

m

∑
p

p⊥[e−iϕ pc
†
p↑c p↓ + eiϕ pc

†
p↓c p↑], (15)

where λ is the SOC strength, p⊥ =
√

p2
x + p2

y , and ϕ p =
Arg(px + ipy). Note that in some references, the Rashba
SOC was written as V3D−ra = −iλ(∂xσy − ∂yσx). In fact, both
forms are equivalent under the global π

2 rotation around the
spin z axis, cσ → e−iπ/4σzcσ . It is easy to see that under
this rotation, (σx,σy,σz) → (σy,−σx,σz), so the two forms
transform to each other. The Dresselhauss SOC can be written
as V3D−D = −iλ(∂xσx − ∂yσy). Under the same rotation, it
becomes V3D−D = −iλ(∂xσy + ∂yσx). Then one needs to
change ϕ p → −ϕ p in Eq. (15). We find that the final results on
the coherence length, Cooper-pair size, and two-body bound
state stay the same as those in the Rashba SOC case. So, in the
following, we only focus on the Rashba SOC.

This model has been studied by previous works [16,17]
with different focuses. The single-particle part H0 in the
Hamiltonian given by Eq. (1) can be diagonalized in the
helicity base as

H0 =
∑

p

(ξ p+h
†
p+h p+ + ξ p−h

†
p−h p−), (16)

where ξ p± = p2

2m
± λp⊥

m
− μ and the two helicity operators are

h p+ = [c p↑ + e−iϕ pc p↓]/
√

2,
(17)

h p− = [eiϕ pc p↑ − c p↓]/
√

2.

In the helicity base, the mean-field interaction
can be rewritten as H MF

int = − 1
2

∑
p(�0e

−iϕ ph
†
p+h

†
− p+ +

�0e
iϕ ph

†
p−h

†
− p− + H.c.) − V |�|2

g
. The total Hamiltonian H =

H0 + H MF
int can be diagonalized by a Bogoliubov transforma-

tion,

H =
∑

p

(E p+α
†
p+α p+ + E p−α

†
p−α p−)

−
∑

p

E p+ + E p−
2

− V |�0|2
g

, (18)

where the quasiparticle excitation energy E p± =√
ξ 2

p± + |�0|2, and the quasiparticle operators

α p+ =
√

E p+ + ξ p+
2E p+

eiϕ ph p+ −
√

E p+ − ξ p+
2E p+

h
†
− p+,

(19)

α p− =
√

E p− + ξ p−
2E p−

e−iϕ ph p− −
√

E p− − ξ p−
2E p−

h
†
− p−,

where all anticommutation relations hold ({α p+,α
†
p+} = 1,

{α p+,α
†
p−} = 0, and so on).

At zero temperature, the two self-consistent equations
become

n = 1

V

∑
p

[
1 − ξ p+

2Ep+
− ξ p−

2Ep−

]
,

(20)
1

g
= − 1

4V

∑
p

[
1

Ep+
+ 1

Ep−

]
,

where, as said in Sec. II, the interaction strength g can be
regularized by the s-wave scattering length as : 1

g
= m

4πas
−

1
V

∑
p

1
2ε p

. In the rest of the section, we will determine the
chemical potential μ, the pairing length ξi in Eq. (9), and the
Cooper-pair size li in Eq. (14). Finally, we will compare our
many-body results with the corresponding two-body results
[14].

A. Chemical potential across BCS to BEC crossover

One can find the chemical potential μ by solving Eq. (20).
It is shown in Fig. 1. As a contrast, the minimum of the single-

0 0.5 1 1.5 2 2.5 3
−12

−10

−8

−6

−4

−2

0

2

λ/kF

μ
/E

F

−λ2/k2
F

0
−1

−2
−3

1
kF as

= 1

FIG. 1. (Color online) The chemical potential μ vs λ in a 3D
Rashba SOC for different scattering lengths. The dashed line is the
bottom of the single-particle spectrum μ0 = − λ2

2m
. Starting from the

BCS side at λ = 0, as λ increases, the μ drops below μ0. This fact
indicates that the system evolves into the BEC state.
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particle excitation energy μ0 = Min p{ p2

2m
− λp⊥

m
} = − λ2

2m
is

also plotted in Fig. 1. We can qualitatively assign the region
with μ > μ0 as the BCS region and μ < μ0 as the BEC region.
As shown in Fig. 1, starting from the BCS side at λ = 0, as λ

increases, the μ drops below μ0. Therefore, we conclude that
Rashba SOC can drive a crossover from BCS to BEC, as first
pointed out in [15].

B. Coherence length across BCS to BEC crossover

The BCS ground state can be written as

|BCS〉 =
∏

p

′
α p+α− p+α p−α− p−|0〉

∝ exp
∑

p

′
[w p+e−iϕ ph

†
p+h

†
− p+ + w p−eiϕ ph

†
p−h

†
− p−]|0〉,

(21)

where the ′ means half of the momentum space and |0〉 is the

electron vacuum state and w p± =
√

E p±−ξ p±
E p±+ξ p±

.

From Eq. (21), one can find the singlet pairing amplitude,

ψ↑↓ ( p) = 〈BCS| c†p↑c
†
− p↓ |BCS〉

〈BCS|BCS〉

= −1

2

(
w p+

1 + w2
p+

+ w p−
1 + w2

p−

)

= −�0

4

∑
α=±

1/E �p,α

= −ψ↓↑ (− p) = −ψ↓↑ ( p) , (22)

and the triplet pairing amplitude,

ψ↑↑ ( p) = 〈BCS| c†p↑c
†
− p↑ |BCS〉

〈BCS|BCS〉

= 1

2

(
w p+

1 + w2
p+

− w p−
1 + w2

p−

)
eiϕ p

= −�0

4
eiϕ �p

∑
α=±

α/E �p,α

= −ψ∗
↓↓( p). (23)

Plugging into Eq. (9) leads to the many-body coherence
length ξi along different directions versus the SOC strength
shown in Fig. 2. We also plot a reference line kF ξ0 = 1
(kF ξ0i = 1√

3
for each component) to qualitatively signal the

BCS to BEC crossover. As shown in Fig. 2, the coherence
length in both the x (or y) and z directions decreases
monotonically and sharply as the SOC strength increases for
a fixed interaction strength 1

kF as
, and finally drops below the

reference line. This is the most direct evidence that the Rashba
SOC drives a crossover from BCS to BEC. The monotonic
decreasing shape of the coherence length in Fig. 2 can be
directly detected by a radio-frequency dissociation spectra
experiment [38].

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

λ/kF

k
F
ξ i

kF ξz

kF ξx,y

kF ξ0i = 1/
√

3

BEC

BCS

1
kF as

= −3
1

kF as
= −2

1
kF as

= −1

1
kF as

= 0
1

kF as
= 1

FIG. 2. (Color online) The coherence length defined in Eq. (9)
along the x direction (red lines) (ξx = ξy) and along the z direction
( blue lines) as a function of 3D Rashba SOC strength λ. The
dashed line is a guidance line where kF ξ0 = 1 (kF ξ0i = 1/

√
3 for

each component). Starting from the BCS side at λ = 0, it decreases
monotonically and quickly below the reference line, and so precisely
describes the SOC-driven BCS to BEC crossover. Starting from the
BEC side at λ = 0, the effects of SOC are small.

In the absence of the SOC when λ = 0, there is only a
singlet pairing, and one can get an analytical result,

ξ 2
x,y,z(λ = 0) =

4
∫

dppd+1 ξ 2
p

E6
p

d (2m)2
∫

dp
pd−1

E2
p

=

√
η(16η4+52η2+45)

η2+1 + 16η4+44η2+25√
η2+1

(2m�)24
√

η +
√

η2 + 1
, (24)

where η = μ

�
. In the weak-coupling (BCS) limit [37], 1

kF as
−→

−∞, μ = EF , and �0 = 8EF

e2 e
π

2kF as −→ 0, ξx,y,z = 1√
6

kF

2m�0
=

1√
6
ξ0BCS, where ξ0BCS = vF

2�0
is nothing but the coherence

length [28] which goes to ∞ as 1
kF as

−→ −∞. In the strong-

coupling (BEC) limit [37], 1
kF as

−→ ∞, μ = −Eb

2 + 2kF as

3π
EF ,

where Eb = 1
ma2

s
is the binding energy, and �0 =

√
16

πkF as
EF ,

so ξx,y,z → as√
6
, which recovers the two-body scattering length

given by Eq. (31) [40].
The coherence lengths along different directions versus the

scattering length are shown in Fig. 3 which is complementary
to Fig. 2.

C. Cooper-pair size across BCS to BEC crossover

As shown in Sec. II, the Cooper-pair size in Eq. (14) is
another characteristic length in a Fermi-gas system. Formally,
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FIG. 3. (Color online) The coherence lengths ξz > ξx = ξy at a
fixed 3D Rashba SOC strength vs the scattering length. Different
colors stand for different SOC strengths. The dark dashed line on the
left is its BCS limit 1√

6
kF ξ0BCS = 1

8
√

6e2 e
− π

2kF as at λ = 0. On the right

is its BEC limit kF as√
6

at λ = 0. On the BCS side, the SOC effects are
dramatic, but on the BEC side, the SOC effects are small, and all
curves converge to the right dashed line kF as√

6
from below.

one can define the Cooper-pair wave function [15] in the
second quantized form by removing the exponential in Eq.
(21),

|gcp〉 =
∑

p

′
[w p+e−iϕ ph

†
p+h

†
− p+ + w p−eiϕ ph

†
p−h

†
− p−]|0〉

=
∑

p

′
[g↑↓( p)c†p↑c

†
− p↓ + g↓↑( p)c†p↓c

†
− p↑

+ g↑↑( p)c†p↑c
†
− p↑ + g↓↓( p)c†p↓c

†
− p↓]|0〉, (25)

which only has two paired fermions with both singlet and
triplet pairing. In Eq. (25), we have used Eq. (17) and found

g↑↓( p) = − 1
2 (w p+ + w p−) = −g↓↑(− p) = −g↓↑( p),

g↑↑( p) = 1
2 (w p+ − w p−)e−iϕ p = −g∗

↓↓( p). (26)

The corresponding first quantized form of Eq. (25) in real
space is

gcp(�r) = g↑↓(�r)(|↑↓〉 − |↓↑〉)
+ g↑↑(�r)|↑↑〉 − g∗

↑↑(�r)|↓↓〉, (27)

where gαβ(�r) = ∑
�p ei �p·�rgαβ( �p), α,β = ↑,↓. Compared to

Eq. (11), one can see that there are two extra equal-spin
px ± ipy pairing components [29] similar to the A phase of
3He.
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√
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1
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kF as
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1
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= 1

FIG. 4. (Color online) The Cooper-pair size defined in Eqs. (14)
and (29) along the x direction (red lines) (lx = ly) and z direction
(blue lines) as a function of 3D Rashba SOC strength λ. Note its
nonmonotonic behaviors in the BCS side. The effects of SOC are
small starting from the BEC side at λ = 0.

It is easy to see that the Cooper-pair size along the i direction
in Eq. (14) can be expressed as

l2
i = 〈gcp|r2

i |gcp〉
〈gcp|gcp〉 , i = x,y,z, (28)

which has a clear physical meaning: the Cooper-pair size is
the “average size” of the Cooper-pair wave function given
by Eq. (27). Shown in Fig. 4 is the Cooper-pair size along
different directions versus the SOC strength. In sharp contrast
to the coherence length, it is nonmonotonic [41] in the BCS
side as < 0, so it may not be a good quantity to characterize
the BCS to BEC crossover. Furthermore, it may not be an
experimentally detectable quantity anyway.

In the absence of the SOC when λ = 0, there is only a
singlet pairing, and Eq. (28) is simplified to

l2
i (λ = 0) =

∑
k

(
1 − ξk

Ek

)2 k2

m2

3
∑

k(Ek − ξk)2
. (29)

In the weak-coupling (BCS) limit (i.e., 1
kF as

−→ −∞), μ =
EF , and � → 0, one finds lx,y,z −→

√
7
2

1
kF

, which is noth-
ing but the interparticle distance, in sharp contrast to the
coherence length, which is nothing but the coherence length.
Using l0BCS ∼ kF

2mεF
, ξ0BCS ∼ kF

2m�0
, one can see their ratio,

l0BCS/ξ0BCS ∼ �0/εF = 8
e2 e

π
2kF as −→ 0. For conventional su-

perconductors, l0BCS/ξ0BCS ∼ 10−4, which indicates that there
are about 104 other Cooper pairs inside a given Cooper pair.
However, for high-Tc superconductors [29,31], l0BCS/ξ0BCS ∼
10−1, which indicates that they are quite close to the BCS to
BEC crossover, but still in the BCS side.
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FIG. 5. (Color online) The Cooper-pair size lz > lx = ly at a
fixed 3D Rashba SOC vs the scattering length. Different colors stand
for different SOC strengths. The dark dashed line on the left is its
BCS limit

√
7/2 at λ = 0. On the right is its BEC limit kF as√

6
at λ = 0.

On the BCS side, the SOC effects are dramatic, but on the BEC side,
the SOC effects are small, and all curves converge to the right dashed
line kF as√

6
from below.

In the BEC limit, we find li → as√
6
, which also recovers

the two-body scattering length given by Eq. (31) [40]. So,
l0BCS/ξ0BCS = 1 in the strong BEC limit. This should be
expected because the Cooper-pair wave function is nothing but
the two-fermion component of the many-body wave function,
so both lengths have to be the same in the strong BEC limit.

The Cooper-pair sizes along different directions versus the
scattering length is shown in Fig. 5, which is complementary
to Fig. 4.

D. Contrast with two-body wave functions

The two-body wave function with a 3D Rashba SOC was
worked out in [14] by solving a two-body Schrödinger equation
[28]. It is instructive to compare the many-body wave functions
given by Eq. (21) and the Cooper-pair wave function given
by Eq. (26) with the corresponding two-body wave functions
(see the extreme oblate case in [14]). They all have the same
symmetries, namely,

ψ↑↓( p) = −ψ↓↑( p), g↑↓( p) = −g↓↑( p),
(30)

ψ↑↑( p) = −ψ∗
↓↓( p), g↑↑( p) = −g∗

↓↓( p).

However, they have quite different behaviors. It was shown
that in the absence of the SOC when λ = 0, there exists a bound
state in the BEC side only with as > 0, and the bound state
has only a singlet component ψ0(�r) = 1

r
e−r/as with a binding

energy Eb = 1
mas

. It is easy to see the size of the bound state:

b(λ = 0) =
√

〈ψ0|r2|ψ0〉
〈ψ0|ψ0〉 = as√

2
, (31)

which is identical to both the coherence length given by Eq. (9)
and the Cooper-pair size given by Eq. (14) in the BEC limit
[40]. As shown in Fig. 1, in the absence of the SOC when
λ = 0, the coherence length ξi and Cooper-pair size li are well
defined in both the BCS and BEC limit.

However, as shown in [14], a nonzero SOC strength λ 	= 0
will always lead to a two-body bound state at any as , and
extending the b(λ = 0) in Eq. (31) to a nonzero λ can be
easily calculated using the two-body wave functions in [14,20].
Any nonzero SOC strength, as shown in Fig. 1, leads to ξz >

ξx = ξy and lz > lx = ly . In the BCS side, ξi and li display
dramatically different behaviors, while in the BEC limit, both
ξi and li converge to the size of the two-body bound state.
This is expected because in the strong BEC limit the overlap
between the two-body wave function and the many-body wave
function must be the same as that between the two-body wave
function and the Cooper-pair wave function.

IV. 3D FERMI GAS WITH AN ISOTROPIC WEYL SOC

The 3D Weyl SOC term VWeyl = λ�k · �σ can be written in
the second quantization form,

VWeyl = λ

m

∑
p

[p⊥(e−iϕ pc
†
p↑c p↓ + eiϕ pc

†
p↓c p↑)

+pz(c
†
p↑c p↑ − c

†
p↓c p↓)]. (32)

The single-particle part in the Hamiltonian given by
Eq. (1) can be diagonalized in the helicity bases as H0 =∑

p(ξ p+h
†
p+h p+ + ξ p−h

†
p−h p−), where ξ p± = p2

2m
± λp

m
− μ

and the helicity operators

h p+ =
√

1

2

[√
p + pz

p
c p↑ +

√
p − pz

p
e−iϕ pc p↓

]
,

(33)

h p− =
√

1

2

[√
p − pz

p
eiϕ pc p↑ −

√
p + pz

p
c p↓

]
.

In the mean-field theory, the total Hamiltonian can also
be diagonalized as Eq. (18), and the quasiparticle excitation
energy E p± =

√
ξ 2

p± + |�0|2; the Bogoliubov quasiparticle
operators take the same form as Eq. (19). At zero temperature,
the two self-consistent equations also take the same form as
Eq. (20), with the corresponding ξ p± and E p± defined above.
Solving them leads to the chemical potential shown in Fig. 6.
Similar to Fig. 1, the Weyl SOC also drives a new crossover
from BCS to BEC.

A. Coherence length

The wave function stays the same as Eq. (21), with
the corresponding ξ p± and E p± defined above. Similar to
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FIG. 6. (Color online) The chemical potential μ vs the 3D
isotropic Weyl SOC strength λ for different scattering lengths. The
black dashed line μ0 = − λ2

2m
is the chemical potential at the bottom

of the single-particle spectrum. Starting from the BCS side at λ = 0,
as λ increases, the μ drops below μ0, indicating a crossover from
BCS to BEC.

Sec. III B, we can determine the singlet pairing amplitude,

ψ ↑↓
↓↑

( p) = 〈BCS| c†p↑c
†
− p↓ |BCS〉

〈BCS|BCS〉

= ∓1

2

(
w p+

1 + w2
p+

+ w p−
1 + w2

p−

)

−1

2

(
w p+

1 + w2
p+

− w p−
1 + w2

p−

)
pz

p
,

and triplet pairing amplitude

ψ↑↑ ( p) = 〈BCS| c†p↑c
†
− p↑ |BCS〉

〈BCS|BCS〉

= 1

2

(
w p+

1 + w2
p+

− w p−
1 + w2

p−

)
p⊥
p

eiϕ p = −ψ∗
↓↓ ( p) ,

where w p± =
√

E p±−ξ p±
E p±+ξ p±

.
The coherence length ξi can be calculated using Eq. (9) and

is shown in Fig. 7. As the Weyl SOC strength increases, in the
BCS side, the coherence length along any direction decreases
monotonically and quickly, then drops below the dashed line.
In the BEC side, the effects of the SOC strength are quite
small. This is the most direct evidence that the Weyl SOC can
also drive a crossover from BCS to BEC and can be directly
detected by the type of experiment presented in Ref. [38].

The coherence lengths versus the scattering length are
shown in Fig. 8, which is complementary to Fig. 7.
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FIG. 7. (Color online) From the BCS side at λ = 0, the coher-
ence length ξx = ξy = ξz of 3D Weyl SOC decreases quickly and
monotonically as the λ increases and drops below the dashed line.
It precisely describes the SOC-driven BCS to BEC crossover. The
dashed line is a contrasting line where kF ξ0 = 1 (for each component,
kF ξ0i = 1/

√
3). From the BEC side at λ = 0, the effects of SOC are

small.
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FIG. 8. (Color online) The coherence lengths ξi of 3D Weyl SOC
at a fixed SOC vs the scattering length. Different colored lines stand
for different SOC strengths. The dark dashed line on the left is its BCS
limit 1√

6
kF ξ0BCS = 1

8
√

6e2 e
− π

2kF as at λ = 0. On the left is its BEC limit
kF as√

6
at λ = 0. On the BCS side, the SOC effects are dramatic, but on

the BEC side, the SOC effects are small, and all curves converge to
the right dashed line kF as√

6
from below. Compare with Fig. 3.
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FIG. 9. (Color online) The Cooper-pair size lx = ly = lz of 3D
Weyl SOC as a function of λ. Note its nonmonotonic behavior at the
BCS side. The SOC effects on the BEC side are small.

B. Cooper-pair size

The Cooper-pair wave function takes the same form as
Eq. (25) in the second quantized form and Eq. (27) in the first
quantized form with the corresponding ξ p± and E p± defined
above. All the components can be written as

g↑↓( p) = −1

2
(w p+ + w p−) − 1

2
(w p+ − w p−)

pz

p

= −g↓↑(− p),
(34)

g↓↑( p) = 1

2
(w p+ + w p−) − 1

2
(w p+ − w p−)

pz

p
,

g↑↑( p) = 1

2
(w p+ − w p−)

p⊥
p

e−iϕ p = −g∗
↓↓( p).

The Cooper-pair size can be evaluated using Eq. (28) and
plotted in Fig. 9. Its nonmonotonic behaviors at the BCS side
indicate it may not be a good quantity to characterize the
crossover.

The Cooper-pair sizes versus the scattering length are
shown in Fig. 10, which is complementary to Fig. 9.

C. Contrast with the two-body wave functions

To explore the relations between the many-body wave
functions or the Cooper-pair wave function studied in this
section and the two-body wave functions in [14], it is con-
venient to introduce the spin eigenstate along the momentum
p
p

= (sin θ cos ϕ, sin θ sin ϕ, cos θ ),

|↑〉 p = e−i
ϕ

2 cos
θ

2
|↑〉 + ei

ϕ

2 sin
θ

2
|↓〉 ,

|↓〉 p = e−i
ϕ

2 sin
θ

2
|↑〉 − ei

ϕ

2 cos
θ

2
|↓〉 ,
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FIG. 10. (Color online) The Cooper-pair size li of 3D Weyl SOC
at a fixed SOC vs the scattering length. Different colored lines stand
for different SOC strengths. The dark dashed line on the left is its
BCS limit

√
7/2 at λ = 0. On the right is its BEC limit kF as√

6
at λ = 0.

On the BCS side, the SOC effects are dramatic, but on the BEC side,
the SOC effects are small, and all curves converge to the right dashed
line kF as√

6
from below. Compare with Fig. 5.

then express the many-body wave functions in terms of the
spin eigenstates along the momentum �p,

g↑↓( p)|↑↓〉 + g↓↑( p)|↓↑〉 + g↑↑( p)|↑↑〉 + g↓↓( p)|↓↓〉

= −1

2
(wp+ + wp−)(|↑↓〉 − |↓↑〉) + 1

2
(wp+ − wp−)

×
[
px − ipy

p
|↑↑〉 − pz

p
(|↑↓〉 + |↓↑〉)

− px + ipy

p
|↓↓〉

]

= −1

2
(wp+ + wp−)(|↑↓〉 − |↓↑〉)

+ 1

2
(wp+ − wp−)(|↑↓〉 p + |↓↑〉 p)

≡ ga(p)(|↑↓〉 − |↓↑〉) + gs(p)(|↑↓〉 p + |↓↑〉 p), (35)

where the components ga(p) and gs(p) are independent of
the direction of p (i.e., θ and ϕ). Compared to Eq. (11), one
can see that there are three extra px ± ipy and pz pairing
components [29] similar to the B phase of superfluid 3He.
This fact should be contrasted to Eq. (27) where there are
only two extra equal-spin px ± ipy pairing components [29],
similar to the A phase of superfluid 3He.

Fourier transforming the Cooper-pair wave function given
by Eq. (35) to real space and comparing with the two-body
wave function in the spherical case in [14], we find that they
have the same symmetry. In fact, a similar relation between the
wave functions (or order parameters) in real space and those
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FIG. 11. (Color online) The chemical potential μ vs λ in a 2D
isotropic SOC system for different scattering lengths. The dashed
line is the minimum energy of the single particle μ0 = − λ2

2m
. On the

BCS side, as λ increases, the μ drops below μ0, indicating a crossover
from a BCS to BEC crossover.

in the helicity momentum basis were derived for magnetic
transitions in repulsively interacting Fermi gas [23].

V. 2D FERMI GAS WITH A RASHBA SOC

A 2D Rashba SOC term V2D−ra = −iλ(∂xσx + ∂yσy) can
be written in the second quantization form,

V2D−ra = λ

m

∑
p

p[e−iϕ pc
†
p↑c p↓ + eiϕ pc

†
p↓c p↑], (36)

where λ is the strength of the SOC, p =
√

p2
x + p2

y , and ϕ p =
Arg(px + ipy). Note that the space is 2D, but the spin is still
SU(2) with the three generators.

The BCS theory in two dimensions has been studied in
several works [42,43] with a different focus. The calculations
are similar to the 3D Rashba case in Sec. III with the
momentum �p confined to be the 2D momentum �p⊥, or
similar to the 3D Weyl case in Sec. IV by setting pz = 0.
Equations (16)–(19) follow. The two self-consistent equations
(20) also hold, with the crucial difference that the interaction
needs to be regularized by a bound-state energy εB at 2D,
instead of a scattering length as in 3D: 1

g
= − 1

V

∑
p

1
2ε p+εB

.
Solving them leads to the chemical potential μ shown in
Fig. 11.

A. Coherence length

When calculating the coherence length, Eqs. (21)–(23) still
hold. For λ 	= 0, only numerical results are available and are
shown in Fig. 12. We can see that in the BCS limit at λ = 0, as
the strength of SOC increases for a fixed interaction strength
εB

EF
, the pair size decreases monotonically and sharply, then

goes below the reference line. Here, we also plot a reference
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FIG. 12. (Color online) The 2D coherence length defined in
Eq. (9) (ξx = ξy) as a function of λ. At the BCS side, it decreases
quickly and monotonically as the λ increases and drops below the
dashed line. It precisely describes the SOC-driven BCS to BEC
crossover. The dashed line is a guidance line, where kF ξ0 = 1 (on
average, kF ξ0i = 1/

√
2). At the BEC side, the effects of SOC are

small.
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FIG. 13. (Color online) The 2D coherence lengths ξx = ξy at a
fixed SOC vs the scattering length. Different colored lines stand for
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at λ = 0. On the right is its BEC limit

√
2EF

3εB
at λ = 0.

On the BCS side, the SOC effects are dramatic, but on the BEC side,
the SOC effects are small, and all curves converge to the right dashed

line
√

2EF

3εB
from below.

053603-10



COHERENCE LENGTHS IN ATTRACTIVELY INTERACTING . . . PHYSICAL REVIEW A 90, 053603 (2014)

line by taking kF ξ0 = 1 (for each component, kF ξ0i = 1√
2
) to

qualitatively observe the BCS to BEC crossover behavior. In
the BEC limit, the effects of SOC are small.

Setting λ = 0, one can easily solve the self-consistent
equations and find μ = EF − |εB |

2 and � = √
2|εB |EF . When

λ = 0, Eq. (24) at d = 3 should be replaced by [42,43]

ξ 2
x,y(λ = 0) =

4
∫

dppd+1 ξ 2
p

E6
p

(2m)2d
∫

dp
pd−1

E2
p

= 1

4(2m�)

(
η + η2 + 2

η2 + 1

1
π
2 + arctan η

)
, (37)

where η = μ

�
. Because of different dimensions, this analytical

expression is very different from Eq. (24) in 3D. In the

BCS limit (i.e., εB

EF
−→ 0), η = 1√

2

√
EF

|εB | −→ ∞, kF ξx,y −→√
EF

8|εB | , which diverges. In the BEC limit (i.e., |εB |
EF

−→ ∞),

μ = −|εB |
2 and η = − 1

2
√

2

√|εB |
EF

−→ −∞, kF ξx,y →
√

3
2

EF

|εB | .
Shown in Fig. 13 is the coherence length versus the

scattering length, which is complementary to Fig. 12.

B. Cooper-pair size

When calculating the Cooper-pair size, Eqs. (25)–(28) still
hold. Shown in Fig. 14 is how the Cooper-pair size changes
with λ. Once more, its nonmonotonic behaviors at the BCS
side indicate it may not be a good quantity to characterize the
BCS to BEC crossover.

When λ = 0, Eq. (29) at d = 3 should be replaced by

l2
i (λ = 0) =

3
[

ln 2 − 1
2 − η

(
π
2 + arctan η

) − ln
(
1 − η√

η2+1

) + η(η +
√

η2 + 1)
]

2m�
[
η3 + (η2 + 1)

3
2 + 3

2η
] , (38)

where η = μ

�
. In the BCS limit (i.e., εB

EF
−→ 0), one get

lx,y −→ √
3 1

kF
, which is nothing but the interparticle distance,

so it goes to a finite value, in sharp contrast to the coherence
length, which diverges. In fact, l/ξ ∼ �0/εF → 0 in the
BCS limit. In the BEC limit (i.e., |εB |

EF
−→ ∞), one find

kF lx,y =
√

2EF

3|εB | , which is identical to kF ξx,y in the BEC limit,

as it should be.
Shown in Fig. 15 is the Cooper-pair size at various fixed

SOC strengths versus the bound-state energies εB/EF , which
is complementary to Fig. 14.
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FIG. 14. (Color online) The 2D Cooper-pair size lx = ly as
a function of λ. Note its nonmonotonic behavior at the BCS
side.

VI. APPLICATIONS TO 2D SUPERCONDUCTOR AND
SEMICONDUCTOR SYSTEMS

In various 3D condensed-matter systems [1,7], the 3D SOCs
usually take λ(�k × �σ ) · ∇V , which is a quite different form
from the Weyl or Rashba forms studied in Secs. III and IV by
keeping the inversion symmetry. It may be interesting to see if
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√
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FIG. 15. (Color online) The 2D Cooper-pair size lx = ly at a
fixed SOC vs the scattering length. Different colored lines stand for
different SOC strengths. The black dot on the left is its BCS limit√

3 at λ = 0. On the right is its BEC limit
√

2EF

3εB
at λ = 0. On the

BCS side, the SOC effects are dramatic, but on the BEC side, the
SOC effects are small, and all curves converge to the right dashed

line
√

2EF

3εB
from below.
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such a 3D inversion symmetric SOC can also drive a BCS to
BEC crossover.

Equation (1) with the 2D Rashba SOC term given by
Eq. (36) may also describe a 2D bright exciton with total
angular momentum J = ±1 in electron-hole semiconductor
bilayer systems and electron pairings in 2D noncentrosym-
metric superconductors [2–4]. It was known that in a 2D
semiconductor electron gas, the 2D Rashiba SOC strength
depends on the electric field, the presence of adatoms at the
boundary, atomic weight, and atomic shells involved [2,5,6]. In
the surface of noncentrosymmetric superconductors, the strong
near-surface electric fields lead to a 2D Rashba SOC quite
similar to the 2D superconducting fullerene and polyacene
crystals in the field-effect-transistor geometry [2]. So the 2D
Rashba SOC strength in the two condensed-matter systems
can also be tuned by adjusting various surface geometries.
Therefore, the results achieved on the BCS to BEC crossover
tuned by the 2D Rashba strength in Sec. V should also
apply to these condensed-matter systems. In Refs. [32–35],
the authors ignored the spins of the fermions and holes,
therefore also the possible Rashba SOC. As shown at the end
of [34], the bright excitons couple to the one-photon process
with the polarization σ = ±. By incorporating the coupling
between the 2D bright excitons subject to the 2D Rashba SOC
studied in Sec. V and the 3D emitted photons with the two
polarizations, it is interesting to study how the emitted photon
characteristics change across the SOC-driven BCS to BEC
crossover.

VII. DISCUSSIONS AND CONCLUSIONS

The new BCS to BEC crossover driven by the SOC
strength has been studied by previous authors from the overlap
between a Cooper-pair wave function and two-body wave
function [15], and also from the Cooper-pair size right at
the Feshbach resonance [16]. In this paper, we investigate
the SOC-driven BCS to BEC crossover from fundamental and
physical points of view. At the mean-field level, we studied
the dependence of chemical potential, coherence length, and
Cooper-pair size on the SOC strength for three kinds of
Fermi gases with 3D Rashba, 3D Weyl, and 2D Rashba
SOC, respectively. We explicitly demonstrated the SOC-driven
BCS to BEC crossover in all three cases by monitoring the
monotonic decreasing of chemical potential and the coherence
length. We show that the most relevant wave function is the
many-body wave function instead of the Cooper-pair wave
function or two-body wave function; the most relevant length
is the coherence length instead of the Cooper-pair size or
the two-body bound-state size. Among the three lengths,
only the coherence length is the experimentally detectable
length.

We can summarize the main differences among the co-
herence length, the Cooper-pair size, and the two-body size
in the following: In the absence of SOC, in the BCS limit,
the coherence length goes to the coherence length ξ (λ =
0) = vF /�0, while the Cooper-pair size goes to the interpar-
ticle distance l(λ = 0) ∼ 1/kF . Their ratio l(λ = 0)/ξ (λ =
0) ∼ �0/εF . For conventional superconductors [28], l(λ =

0)/ξ (λ = 0) ∼ 10−4, so they are well inside the BCS limit.
The BCS mean-field theory works well; quantum and classical
fluctuation effects can be neglected except very close to the
critical transitions at finite temperatures. For high-temperature
superconductors [29,31], l(λ = 0)/ξ (λ = 0) ∼ 10−1, so they
are quite close to the BCS to BEC crossover, but still in the
BCS limit with a well-defined Fermi surface. So quantum
and classical fluctuation effects cannot be ignored [29]. In the
BEC limit, they both get to the two-body bound-state size,
and therefore l(λ = 0)/ξ (λ = 0) ∼ 1. The results on l in Eq.
(29) at 3D and Eq. (38) show completely different behaviors
from ξ . It is very instructive to compare the two different length
scales. In the presence of SOC, on the BCS side, the coherence
length ξi(λ),i = x,y,z decreases monotonically and quickly
moves into the BEC regime, so it can be used to characterize
the BCS to BEC crossover quantitatively. Furthermore, it can
be detected by a rf dissociation spectra experiment, while
li(λ) shows nonmonotonic behaviors and so it cannot be
used to characterize the BCS to BEC crossover even quali-
tatively. Furthermore, it is not an experimentally measurable
quantity.

In a future paper, we will compute the fluctuation cor-
rections to the mean-field-theory results on the coherence
length achieved in this paper. One can achieve the goal by
calculating the fermion pairing correlation function given
by Eq. (8) using the 1/N expansion [44,45]. It is known
that the quantum fluctuation effects are important near the
BCS to BEC regime. It may also be interesting to extend
the zero-temperature results on the coherence length to finite
temperatures, whose effects are especially important to 2D
Rashba systems, studied in Secs. V and VI. However, it is
not known how to extend the concepts of Cooper-pair size
defined in Eq. (14) beyond mean-field results and to finite
temperatures. Above all, its definition is based on the explicit
form of the mean-field state. Therefore, the coherence length
is a much more robust concept than the Cooper-pair size. It
is also an experimentally measurable quantity through radio-
frequency dissociation spectra. Of course, the two-body wave
function is defined only for two fermions, and cannot be used
to study a many-body system anyway. The Cooper-pair size
has been evaluated at the mean field through the topological
transition in [39]. As demonstrated in this paper, the coherence
length shows quite different behaviors from the Cooper-pair
size, and it may be useful to study the coherence length through
various topological transitions driven by the Zeeman field
[46–48].
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Simonet, K. Sengstock, R. Höppner, P. Hauke, A. Eckardt, M.
Lewenstein, and L. Mathey, Nat. Phys. 9, 738 (2013).

[25] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Phys. Rev. Lett. 111, 185301 (2013); H. Miyake,
G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and W. Ketterle,
ibid. 111, 185302 (2013); C. J. Kennedy, G. A. Siviloglou,

H. Miyake, W. C. Burton, and W. Ketterle, ibid. 111, 225301
(2013).

[26] Fadi Sun, Xiao-Lu Yu, Jinwu Ye, Heng Fan, and Wu-Ming Liu,
Sci. Rep. 3, 2119 (2013).

[27] Fa-Di Sun, Jinwu Ye, and W. M. Liu, arXiv:1408.3399.
[28] P. G. De Gennes, Superconductivity of Metals and Alloys

(Perseus, New York, 1999). On page 96, Eq. (14) was evaluated
with respect to a two-fermion wave function outside a Fermi
surface, which is the original Cooper-pair problem. Due to
the absence of the Fermi surface, this two-body bound state
discussed in [14] still differs from the original Cooper-pair
problem.

[29] A. J. Leggett, Quantum Liquids (Oxford University Press,
Oxford, 2006).

[30] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger, Rev.
Mod. Phys. 80, 885 (2008).

[31] Jinwu Ye, Phys. Rev. Lett. 86, 316 (2001); ,87, 227003 (2001);
,Phys. Rev. B. 65, 214505 (2002).

[32] Jinwu Ye, T. Shi, and Longhua Jiang, Phys. Rev. Lett. 103,
177401 (2009);

[33] T. Shi, Longhua Jiang, and Jinwu Ye, Phys. Rev. B 81, 235402
(2010)

[34] Jinwu Ye, Fadi Sun, Yi-Xiang Yu, and Wuming Liu, Ann. Phys.
329, 51 (2013).

[35] Jinwu Ye, J. Low Temp. Phys. 158, 882 (2010).
[36] As shown in Sec. II B, the reason for quotation marks

on both the “Cooper-pair wave function” and “Cooper-pair
size” is that they are not really physical, so they may not
be really understood as the Cooper-pair wave function and
Cooper-pair size. For illustration purposes, they are evaluated
here to compare with the physical coherence length and
two-body bound state. Furthermore, several authors [16, 39]
also evaluated this unphysical length in different contexts. For
notational simplicity, we dropped the quotation mark in the
following.

[37] J. R. Engelbrecht, M. Randeria, and C. A. R. Sá de Melo, Phys.
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