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Collective modes of spin-orbit-coupled Fermi gases in the repulsive regime
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We investigate the collective modes in the spin-orbit-coupled Fermi gas with repulsive s-wave interaction.
The interplay between spin-orbit coupling and atom-atom interactions plays the crucial role in the collective
behaviors of Fermi gas. In contrast with ordinary Fermi liquid, spin-orbit-coupled Fermi gas has strongly
correlated spin and density excitations. Within the scheme of random-phase approximation, we classify collective
modes based on the symmetry group and determine their properties via the poles of corresponding correlation
functions. Besides, the particle-hole continuum is obtained, where the imaginary part of these correlation functions
becomes nonvanishing. We also propose an experimental protocol for detecting these collective modes and discuss
corresponding experimental signatures in the ultracold Fermi gases experiment.
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I. INTRODUCTION

A great deal of attention has been focused on the spin-orbit
coupling (SOC) because of its fundamental importance in
condensed-matter systems [1-6] and important applications
in spintronic device [7]. In recent years, a wide range of
atomic physics and quantum optics technology provides
unprecedented manipulation of a variety of intriguing quantum
phenomena, therefore it seems to provide an ideal platform
to study the effects of SOC in ultracold atomic systems.
The experimental studies on this topic have made great
breakthroughs. Based on the Berry phase effect [8] and its
non-Abelian generalization [9], Spielman’s group in NIST
has successfully generated a synthetic external Abelian or
non-Abelian gauge potential coupled to neutral atoms [10-13].
Recently, the SOC Fermi gas has been first engineered in
weakly repulsive “°K [14] or °Li [ 15] atomic gases. Realization
of SOC in quantum gases will open a whole new avenue in
cold atom physics.

Motivated by these recent experimental progresses of
ultracold Fermi gases, we consider the two dimensional (2D)
Fermi gas with SOC in the repulsive regime. The repulsive
atom-atom interaction can be engineered in the upper branch
of the energy spectrum, where there is uncondensed Fermi gas
in the absence of molecule formation [16]. The repulsive Fermi
gas is stable when it is far away from the resonant regime,
which has been successfully reached in experiment [17]. In
our previous work, we have studied low-energy single-particle
excitations and calculated the Fermi-liquid parameters such
as the quasiparticle lifetime, renormalization factor, and the
effective mass in the repulsive regime [18].

In this paper, we investigate the collective modes of two-
dimensional Fermi gas with SOC in the repulsive regime. The
research of the low-energy collective modes in degenerated
quantum gases yields a wealth of insights into the properties
of ultracold atomic systems. A lot of previous studies have
been devoted to the collective behaviors in various symmetry-
broken phases of ultracold atomic systems, which include the
degenerate gas at the Bose-Einstein condensation (BEC) to
Bardeen-Cooper-Schrieffer (BCS) crossover [19-22], Fermi
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gas in the unitarity limit [23-26], imbalanced Fermi gas
[27], and BEC in the presence of SOC [28,29]. By contrast,
we focus on the normal-state regime of the SOC Fermi
gas in this work. The interplay between SOC and s-wave
atom-atom interactions plays a crucial role in our inves-
tigation. Compared with ordinary Fermi gas, SOC Fermi
gas has strongly correlated spin and density excitations.
Within the scheme of random-phase approximation (RPA),
we classify all the collective modes and determine their
properties via the poles of corresponding RPA correlation
functions.

In contrast with previous works in solid-state systems
[30-38], the consideration of s-wave interaction in ultracold
atomic systems instead of the Coulomb interaction leads to
qualitatively different collective behaviors. The reasons for
this are twofold: First, the force range of the s-wave interaction
is short and the interaction vertex is independent to the
momentum transfer. Second, the s-wave interaction is spin
dependent in ultracold Fermi gas, which can be decomposed
into the density and spin channels [39]. The collective modes
of this system are grouped into two categories: (i) one branch
of gapless mode, namely zero sound, which is an oscillation of
density coupled with the transverse spin oscillation; (ii) three
branches of gapped modes. We expect that our microscopic
calculations of the collective modes would have immediate
applications to the SOC Fermi gas in the upper branch of the
energy spectrum.

The paper is organized as follows. The model building of
SOC Fermi gas with repulsive s-wave interaction is described
in Sec. II, where all the microscopic parameters and the helicity
eigenstates are explained. Furthermore, the collective modes
are classified based on the symmetric property. In Sec. III,
we develop a general approach to calculate a series of RPA
correlations functions. In Sec. IV, we investigate the solutions
of matrix forms of the RPA equation both analytically and
numerically. Finally, we propose an experiment protocol to
detect collective modes in Fermi gas with SOC on the upper
branch of energy spectrum and estimate the corresponding
experimental signatures in Sec. V.
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II. SOC FERMI GAS WITH REPULSIVE S-WAVE
SCATTERING

We consider the collective modes of a 2D spin-1/2 ultracold
repulsive Fermi gas with Rashba SOC, described by the model
Hamiltonian

H =) ckhapcipt28)  ChrgrCpqiCoicirs (1)
k.o, k.p.q

where o and B are the spin indexes. The first term is the
noninteracting part, and 4 is the single-particle Hamiltonian
with SOC [40],
k2
h=-—+AixZxKk) -0 —pu, 2
2m

where p = k% /2m is the chemical potential and kg is the
Fermi momentum in the absence of SOC; A represents the
strength of SOC. Hereafter,  is taken as 1. The eigenstates of
single-particle Hamiltonian / can be obtained as follows:

1 1
k, £ 1) = 7 (iiew(k)) , 3

where ¢(k) is the azimuthal angle of momentum k and the
helicity +1 represents that the in-plane spin polarization is
righthanded or lefthanded with respect to the momentum. The
dispersion relations for two helicity branches are & 1+ = (k> +
2kg k| — k%)/2m, where kr = mA corresponds to the recoil
momentum in experiments [14,15]. The Fermi momentum and
the recoil momentum provide two scales for the 2D Fermi gas
with SOC, and the dimensionless ratio y = kg /kr denotes the
significance of SOC. The Fermi surfaces are given by &k, = 0,
which gives rise to two circles in the momentum space with
two Fermi momenta as k; = kkp — skg, where k = /1 + 2.
We plot the energy spectrum and the Fermi surfaces with the
associated spin textures in Fig. 1 for two different chemical
potentials respectively. We note that the outer and inner Fermi
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FIG. 1. (Color online) (a) and (c) plot the energy spectrum in
presence of spin-orbit coupling with different fillings. The thick black
horizonal line denotes the level of chemical potential. (b) and (d) show
the Fermi surfaces and the associated spin textures corresponding to
(a) and (c) respectively.
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surfaces shown in Fig. 1(b) have opposite helicities, therefore
one has Berry phase m, another has —m while the outer and
inner Fermi surfaces shown in Fig. 1(d) have the same helicity
and Berry phase . In the present work, we only consider
the case shown in Fig. 1(a), where the two Fermi surfaces
correspond to different helicity branches.

The second term in Eq. (1) represents the s-wave interaction
in ultracold atomic gases. The low-energy interaction among
ultracold atoms is universally determined by the scattering
length a; [41-43]. For quasi-2D system, which can be realized
through a strong confinement in the Z direction perpendicular
to the 2D plane, the effective s-wave scattering strength is
determined by 2g = 47 Na,/3+/2wm¢., where N is the total
atom number, m is the mass for atom, and ¢, = /1/mw,
is the confinement length of the atomic gases along the Z
direction with w, as the trap frequency of the confinement
potential. The significance of s-wave interaction in ultracold
atoms could be characterized by the dimensionless ratio of
the average interaction energy and kinetic energy &;,,/&kin,
i.e., mg = 2w Nay/3+/2m .. With the technique of Feshbach
resonance, the strength of the repulsive interaction can be tuned
within a wide range [44—49].

The dynamical response of SOC Fermi gas can be described
via the density and spin susceptibility,

LA
X" (@ iwn) = Z Z / dtelwmr(TrcltanZ‘ickJrqﬂ(T)
0

k,p afysd

XChayT05Cps(0)), 4

where o* = (6°,6),0° is the 2 x 2 unit matrix, and ¢ are the
Pauli matrices. We could study the collective modes through
the poles of the dynamical response function to external
density and spin perturbations. The SOC is isotropic in the
2D x-y plane. The density and spin susceptibility x*V is
invariant under the simultaneous rotation of the momentum
q and the spin s = %a around the Z axis, namely the rotation
group: SO(2)p, where the subscript D represents the combined
operation for the momentum and spin space.

Furthermore, considering the Rashba-type SOC and the
rotation invariance of Fermi surface around the Z axis, the
density excitations are coupled with the transverse components
of the spin excitations s” = (Z x ) - s intrinsically, while both
of them are decoupled from the longitudinal component s> =
q - s and perpendicular component s# = % - s [50]. Therefore,
it is convenient to study the collective modes under the helical
representation, which is defined as {n,s”,s’,s%} with n as the
density component. Under the helical representation, the 4 x 4
susceptibility matrix decomposes into two 2 x 2 matrices. One
is in the subspace of n-sT, and the other is in the subspace of
sL-sZ. Based on this decomposition of the susceptibility, the
collective modes are grouped into two categories: one with
the density and transverse spin excitations s, and the others
with the perpendicular and longitudinal spin excitations sZ,s*.
Without loss of generality, we can assume q = gey in the
following. Thus we have

st =gV 8s" =557 = 5%, 5)
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In the following sections, we will work in this representation
to calculate the density and spin susceptibility and investigate
the collective modes of SOC Fermi gas.

III. DENSITY AND SPIN-CORRELATION FUNCTIONS

A. Feynman rules and susceptibilities

The particle line shown in Fig. 2(a) represents the Green’s
function with SOC in the Matsubara formalism

. (Px)orﬂ
G, (k,ik,) = —=
aﬂ( l n) szzi:l ikn — é;-k,s

where ik, = 2n + 1)wkgT is the fermionic Matsubara fre-
quency and Py is the projection operator to the helicity
eigenstates: Py = [1 + s(Z X K)-01/2. It is helpful to apply
the Fierz identity 2€%¢* = (0/)#7(0,)* to the s-wave
interaction vertex, where €*? is the 2 x 2 antisymmetric
matrix, c* = (¢°,0) and o, = (¢°, — o). The interacting part
can be rewritten as

1
t
Vi=sm 2 2 Vamak+ace—o
apydk.p.q

cp(P)ca(k), (7

where V5.4, = g(0")g,(0,)es. The Feynman rule for the
interaction vertex is shown in Fig. 2(b). In fact, the interaction
vertex considered here includes two cases: (k1,p |) —
& 1,p })and (k1,p ) — (K |,p 1), which corresponds
to direct and exchange interaction respectively [51,52].

The collective modes and particle-hole pairs are two
fundamental types of excitations of the SOC Fermi gas. The
dispersions of collective modes are determined by the poles of
the density and spin susceptibility. With these Feynman rules
defined above, the RPA susceptibility can be evaluated as [see
Fig. 2(d)]

(6)

pv
Xg;A(qalqm) = le(qJCIm)<;> ) (8)
1+ gnx(q,igm)
where
nzdiag{la_17_17_1}7 (9)

and y is the bare susceptibility for noninteracting Hamiltonian.
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FIG. 2. (a) The free Green’s function with SOC: —G°(p,ip,). (b)
The interaction vertex —g(c*)?” (5,,)*°. (c) One-bubble diagram: the
bare susceptibility x""(q,ig,). (d) The sum of the bubble diagrams
gives the RPA susceptibility x&p4(q:igm)-
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In Matsubara formalism, the bare susceptibility x*"(q,i g, )
is given by the one-loop diagram as shown in Fig. 2(c),

X" (@Qign) = —kpT Y TG (k + q/2.ik,)o"
k,ik,

xG(k — q/2,ik, —ign)o"], (10)

where ig, =2mnkgT and ik, = (2n + 1)wkpT are the
bosonic and fermionic Matsubara frequencies, respectively.
The Green’s function G°(k,ik,) includes a momentum-
dependent projection operator Py, and the trace in Eq. (10)
gives rise to an overlap factor as

FY = TPk + q/2)0" Pk — /20”1, (1)

where p,v = 0,1,2,3 represent the density and spin compo-
nents in X,¥,Z directions, and s,r are helicity indexes. After
summing over the fermionic Matsubara frequency ik,, and
performing the analytical continuation igq,, — @ +i0", we
have

() = — Z v SCGr—q/2.5) = fExrqrar)

—. (12
k,s,r v %‘k—q/Z,s _Ek‘HI/ZJ’ +a)+10+

At zero temperature, the Fermi occupation function is f(§) =
O(—£). The numerator in the Eq. (12) is nonzero only if

k—q/25 > 0, Eitqp2r <0, 13)

or

Ek—q25s <0, Ekiqr >0, (14)

which represent the conditions for particle-hole excitations.
The &k_q/2,s — &k+q/2,- in the denominator is the corresponding
particle-hole exciton energy, which includes the contribution
from intraband and interband and forms a continuum as shown
in Fig. 3. Accordingly, the contributions to the susceptibility
come from two aspects: the intraband r = s and the interband
r = —s. When the frequency and momentum of the suscep-
tibility w,q fall in the particle-hole continuum (see Fig. 3),
the integration in Eq. (12) will develop a nonzero imaginary
part, which corresponds to the damping of the collective

w/gp

k/kr

FIG. 3. (Color online) Particle-hole continuum of SOC Fermi
gas for y =0.5. The red region surrounded by the thick black
lines represents the interband particle-hole continuum. The region
surrounded by the dashed yellow lines represents continuum of
intraband particle-hole excitations with helicity +1, the blue region
filled with vertical lines, with helicity —1. The points a,b,c, and d
correspond to the momenta 2kg,2k,2xkr, and 2k_; respectively,
where the static susceptibility function exhibits singular behaviors
[53].
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excitations. The details about this integration will be further
discussed in the following sections and Appendix A. The
static density-density susceptibility x%(q) exhibits singular
behaviors at |q| = 2kg and |q| = 2kkp. In addition, there are
weak anomalies at |q| = 2k4; and |q| = 2k_; caused by the
intraband virtual transitions [53]. These specific momenta are
shown in Fig. 3, which appear as edges of the intra- and
interband particle-hole excitation continuum.

We want to make some general observations of the overlap
factor F!-'" and bare susceptibility x as following: (i) Fy.(q) =
Fo(q); (i) Fi' (@) = B (—q); (i) x(q,0)" = x(—q, — o).
In the long-wavelength limit |q| — 0, the overlap factor F*¥
can be expanded relative to q up to O(q?) approximately. The
intraband contribution is

1 —scosf  ssinf i 'q‘zﬁf“g
—5cosf cos2 6 _ sin26 _l-s\ql sin 26
FW — 2 41k|
O . __sin26 -2 . s|q| sin? 0 ’
ssin6 == sin” 6 T
—i |q| sin6 . s|q| sin 20 _:sldl sin? 6 0
2|K| 4k 21k|

5)

where 6 is the azimuthal angle of k= (cos@,sinf). The
interband contribution is

0 slqsin@  s|q|sin20 i |q| sin@
2|Kk| 41k| 21K
sin? 0 . si ..
P —S‘qélslf“ sin” 6 2 —issing
s,—=s — | slqlsin26 i .
% 2 cos’0  —iscosf
. 1qlsin@ . .
z% issin® iscosf 1

(16)

In the following calculations, we will find that the susceptibil-
ity decomposes into two 2 x 2 matrices, which coincides with
the argument in Sec. II B based on the symmetry property
of this system. Besides, the momentum q dependent terms in
the overlap factor have negligible contributions to the low-g
(long-wavelength limit) properties of the collective modes,
such as the sound velocity of the gapless mode and the energy
gaps of the gapped modes.

B. Intraband contributions (r = s)

In the long-wavelength and low-frequency limit (¢ <
kr,w < 1), the expansions of the particle-hole exciton energy
and occupation functions in Eq. (12) to the leading order of
q| are

k+SkR

Exk—(q/2).s — Ek+q/2).s = — k-q, (17

and

fEx—@2.s) — [ Exr@.s)
> =8 (&is) Ek—a/2.5 — Ekr(a/2).s)- (18)

Both have corrections of O(g?/k%). The intraband suscepti-
bility reads

v m ks , cos6
_ ) = — =l aoF 27 (19
Kinra (0:2) 472k Z kp f oyt —coso (19)

where y = mw/kkp|q| and 6 is the angle between k and q.
We notice that the intraband susceptibility is a function of
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the dimensionless value y in the long-wavelength and low-
frequency limit. Making use of the overlap factor given in
Eq. (15), the elements of x (q,w) can be expressed in terms of
the following integrals:

L XL 0 0
A m| L 1 0 0
intra _ _ 12 3

0 0 0 O

where the definitions and results of these integrations
I, I, I3, and I5 are given in Appendix A.

C. Interband contributions (r = —s)

Similar to the intraband contribution, the energy of the
interband particle-hole excitation is expanded relative to q to
the leading order

k .
Ek—(a/2s — Ekt(a/2)—s = - (2skg —k - q), 21

with corrections of O(g?/k%). We notice that the energy of
interband particle-hole excitation obtains an additional term
+2kkg/m in the presence of SOC. This term dominates the
energy of particle-hole excitation at the region g < kg, which
is dramatically important for giving rise to the low-q properties
of the collective excitations, including the sound speed of the
gapless modes and the energy gaps of the gapped modes. The
difference of occupation is expanded as

S Ck—q2).5) — [ (Ekt@q/2).—s) = —5O (kg — |k — kkp|)
I8 (k — ky) + 6 (k — kﬂ)ll%. 22)

Since the low-g behaviors of collective modes provide qual-
itative features of the dispersion relations, we will discuss
the low-g properties of x ™" in the following and neglect the
second term of the occupation difference in Eq. (22), which is
negligible for properties of the collective modes in the low-g
regime where |q| < kg.

By contrast with the intraband susceptibility, the interband
one x ™ has a well defined value in the long-wavelength and
low-frequency limit, which reads

0 0 0 0

inter __ m 0 1/2 0 0
x"==1o o 12 of|®®>0 @

0 0 0 1

with corrections of O(g,®), and it has no dependence on the
way that q,o tends to zero. Combined with the intraband
contribution in Eq. (20), we find the total susceptibility in the
static and uniform limit with /g — O reads as x*" = 24,
namely the total density of states above the Dirac point of
the spectrum. Applying the Stoner’s criterion for itinerant
ferromagnetism in the framework of RPA, i.e., det[ XEPIA] <0,
we find a critical value of the interaction strength g, =
=, above which the SOC Fermi gas experiences a Stoner
instability of ferromagnetism [54-56]. Experimentally, the
itinerant ferromagnetism in a Fermi gas of ultracold atoms
has been observed [17]. In the normal-state regime, we have
g < 8., and all the evaluations in our work are focused on this
regime.
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Next, we consider the properties of ™™ in the high-
frequency regime. From Eq. (20), we know that the intraband
contribution in this regime vanishes. Therefore only the
interband susceptibility contributes, which reads

0 0 0 0
q
o|l—).
* (kR)
ZstKk+y

0 F/2 0 0
(24)
where Fy; = 2y — z,In=—"L)/4y with z;, = w/4syer.

inter __ ﬂ
=220 0 Ep2 o
: 0 0 0 F,
. LKy . o
The summation of the intraband and interband contribution
gives the total susceptibility

X = Xintra + Xinter. (25)

In the following, we will discuss the properties of the collective
modes based on these expressions derived in this section. The
discussions and the numerical calculations of the behaviors
of the collective modes beyond the low-g regime will be
presented together.

IV. COLLECTIVE MODES

In this section, we study the collective behaviors via the
poles of the density and spin RPA correlation functions [57]. At
first, we discuss the low-g behaviors based on the expressions
presented in the last section, and then, we will show the
dispersion relations of collective modes beyond low-g regime
through numerical calculations.

To study the low-g behaviors of the collective modes, it
is useful to note the following behaviors of x#". First, if the
dimensionless ratio y = mw/kkp |q| is fixed when g — 0, we
obtain

Y
YT = ( Xnn Y Xnn

m , — 0, fixed, 26
Ly dun 2 +y2Xnn> al Y (26)

where x,, = —mI(y)/m is the density-density element of the
susceptibility matrix. Second, if we fix the @ when |q| — 0,
the dimensionless parameter y tends to infinity. At first, we
consider weak SOC case (y « 1), and we obtain

m {0 0
XnT=; 0 8y’er

16y2e2—w?

) , lql = 0,0 fixed, 27

where the intraband has no contribution in this limit. From
Eq. (26) and (27), we conclude that the solutions contain two
different categories: (i) the gapless modes, which are coupled
oscillations of the density and transverse spin excitations; (ii)
the gapped modes, which are the oscillations of the transverse
spin excitations.

The collective modes in this subspace can be determined
by the poles of RPA susceptibility in Eq. (8), which are
given by

det(1 + goz xar) = 0. (28)

The solutions of the real part of Eq. (28) give rise to the
dispersions of the collective modes. Within the scheme of RPA,
we find that the determinant det(1 + go, x,,7) will develop
a nonzero imaginary part when the dispersions fall in the
particle-hole continuum, which is given in Fig. 3. For this
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FIG. 4. (Color online) (a) The speed of zero sound as a function
of s-wave scattering length. (b) The speed of zero sound as a function
of the strength of SOC. The parameters used here are as follows: the
number of °K atoms is about 10%,kz = 27 /A withA = 773 nm, y =
0.5, trapping frequencies (w,,w;) = 2w x (10,400) Hz, and a; =
2.70ay, where ay is the Bohr radius. The corresponding dimensionless
interaction strength mg is about 3.0, which is less than the critical
value 7.

regime, the collective modes are unstable and will decay to
particle-hole pairs.

Substituting Eq. (26) to Eq. (28), we obtain a gapless
dispersion, which is given by the solution of

m.,. .2 v: 200
(Ut g [1 = 8 (5 +3%tun) | + S58%57 20 = 0. (29)

From Eq. (26), we find that the density component is coupled
with the transverse spin component. Therefore the zero sound
is a coupled oscillation of the density and transverse spin
excitations. In Fig. 4(a), we show the sound speed of this
gapless mode by solving Eq. (29) numerically. For comparison,
the sound speed of the ordinary Fermi liquid without SOC is
shown together.

Substituting Eq. (27) to Eq. (28), we obtain one branch of
gapped mode corresponding to transverse spin oscillation. The
frequency at |q| = 0 of this mode is given by the solution of

mg 8)/26%

l-———-——— =0, 30
7 16y2€2 — »? G0

which yields the result
Ar =4\/1 —mg/2nyer, 31

where Ar is the energy gap of the transverse spin mode;
mg = €;n/Exin 1S the dimensionless ratio of interaction en-
ergy and kinetic energy in two dimensions, which denotes
the significance of interaction strength in ultracold atomic
system. The joint orbital and spin rotation about the Z axis
[UM)orpizar x U(1)gpinlp indicates that the low-g dispersion
of this gapped mode is wr(q) = Ar + arg>.

Similarly, we consider susceptibility in the s”-sZ subspace
in the long-wavelength limit under the assumption of weak
SOC (y < 1). The RPA susceptibility xXF4 is positive
definite in the limit ¢ — O while keeping y fixed in the
normal-state regime. Therefore there are no gapless excitations
in the the longitudinal and perpendicular spin subspace. In the
limitg — O while keeping w fixed, the interband susceptibility
dominates and gives rise to

m % 0
16y2€% —w?
ALz = — vierme 16722 (32)
T 0 YV €F
16y2€2 —w?
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The poles of RPA susceptibility x <74 = x,2[1 — gx12]”

give rise to two branches of gapped modes corresponding
to the longitudinal and perpendicular spin oscillations. The
frequencies at |q| =0 of these two modes are given as
follows:

1

Ap =41 —mg/2nyep, (33a)
Az =41 —mg/nyer, (33b)

where A and Az are the energy gaps for the longitudinal spin
and perpendicular spin modes respectively. The joint orbital
and spin rotation about the Z axis [U(1)orpirar X U(1)spinlp
indicates that the low-g dispersions of the two gapped modes
arewr(q) = AL + (qu2 andwz(a) = Az + azqz. Compared
with the formula of A7 in Eq. (31), we notice that the energy
gaps for transverse spin and longitudinal spin modes are
degenerate: A7 = Ay . But the coefficients of q2 terms need
not be the same. One can also see that above some g values,
the energy gaps will vanish. However, the system may develop
some magnetic orders before these g values [58].

This degeneracy of Ar and Ajp could be understood
generally as follows. For finite momentum of the collective
excitations q, the in-plane spin could be divided into transverse
(sT) and longitudinal (s*) components relative to the direction
of q as defined in Sec. II. In the limit ¢ — 0, the in-plane spin
components s” and s are not distinguishable. Therefore the
susceptibility for the in-plane spin fluctuations are isotropic.
As a result the corresponding energy gaps Ar and A are
equal to each other. For nonzero momentum, this degeneracy
is lifted and the collective modes for s7 and s fluctuations
have different dispersions, therefore, a7 # «; in general. This
argument also applies to the case for strong SOC, which is
shown explicitly in the following discussion.

We now want to consider the collective modes for strong
SOC. In the present experiments [14,15], the typical experi-
mental values for the dimensionless ratio y ranges from about
0.5 to 1. Thus in the following, we need to consider the case for
y ~ (1) based on Eq. (20) for the gapless mode and Eq. (24)
for the gapped modes. The sound speed of the gapless mode
with strong SOC has been shown in Fig. 4(b). We found that
the sound speed relative to the Fermi velocity is reduced with
increasing SOC.

There are still three gapped modes corresponding to
transverse, longitudinal, and perpendicular spin excitation and
the analytical formulas for the energy gaps of gapped modes
given by (31) and (33) provide qualitative approximations,
with corrections O(y?). By numerically solving the RPA
equation based on the exact formula in Eq. (20), we obtain
the energy gaps as a function of mg and y in Fig. 5 for
typical experimental parameters. From Fig. 5(a), we find that
the energy gaps are close to the boundary of the particle-hole
continuum at q = 0 for mg/m < 0.5, which is on the same
order of y. From Fig. 5(b), we find that in the weak SOC regime
the analytical results for the two in-plane modes 7, L (shown
as dashed lines) agree well with the numerical solutions.
In the strong SOC regime with y ~ 1, the energy gaps for
the in-plane modes 7,L are close to the boundary of the
particle-hole continuum (shown as the black dashed line). The
analytical result for out-plane modes Z (shown as blue dashed
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FIG. 5. (Color online) The energy gaps for gapped modes as
functions of dimensionless interaction strength mg in (a), and SOC
strength y in (b). The parameters taken here are the same as in
Fig. 4. For (a), we find that the energy gaps are close to the edge of
particle-hole continuum for mg/m < 0.5. For (b), the red and blue
dashed lines starting from y = 0 are approximations in Egs. (31) and
(33), and the black dashed line starting from y = 1 are boundary of
the particle-hole continuum at q = 0.

line) shows a good agreement with the numerical solution in
the full range of y.

Finally, we want to stress that the cold atom systems
are prepared in harmonic traps. Although the trap size is
usually much larger than the interatom distance and the laser
wavelength [59], the finite-size effect of the trap should be
concerned. Results obtained from uniform system in this
work could be applied to the trapped system only when the
wavelengths of the collective excitations are much smaller
than the trap size ayo. More specifically, the finite size of
the system provides a lower limit 27 /ayo for the momentum
scale of the collective modes. To go beyond the low-¢g regime,
we numerically evaluated the dispersion relations w;(q),i =
S,T,L,Z shown in Figs. 6 and 7, corresponding to weak and
strong SOC respectively. At finite momentum, the gapped
mode wr(q) becomes a coupled oscillation of density and
transverse spin due to SOC. For SOC generated in present
experiments [14,15], y ~ 1, the dispersion relations for modes

0.04

particle-hole continuum
0.03

& B -
s o S
2 002} =— T weak SOC
g —— L y=0.01
3 —— 7 B
0.01§
¢
o L L L L L
0 02 04 06 08 1 1.2
a’k,

FIG. 6. (Color online) The collective excitations for weak SOC
with y = 0.01. The other parameters used here are the same
with Fig. 4. The transverse, longitudinal, and perpendicular spin
excitations are labeled by T, L, and Z. S denotes the zero sound
mode. These collective modes finally disappear in the particle-hole
continuum. The red region denotes the spin sector of the particle-hole
continuum and the blue region denotes the density sector.
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FIG. 7. (Color online) The collective excitations for strong SOC
with y = 0.5. The other parameters and the notations of these
collective modes are the same as in Fig. 6.

T and L are nearly degenerate and stand close to the edge of the
particle-hole continuum (see Fig. 7). The dispersion relations
for gapped modes are flatter compared to the weak SOC case.

V. EXPERIMENTAL SIGNATURES AND SUMMARIES

We have shown the behaviors of collective modes in the
long-wavelength limit with SOC and repulsive s-wave interac-
tion. Recently, the SOC in Fermi gas has been realized wtih 4°K
atoms [14] and °Li atoms [15]. In their experiments, the equal
weight combination of Rashba-type and Dresselhaus-type
SOC is realized. This is the first step towards the realization of
pure type of SOC experimentally. In this work, we focus on the
Rashba-type SOC, and the Dresselhaus-type SOC is presented
in Appendix B, which is demonstrated to give the same results
as the Rashba SOC for collective behaviors. The short-ranged
repulsive s-wave interaction can be achieved on the upper
branch of a Feshbach resonance, where there are uncondensed
Fermi gases in the absence of molecule formation [16]. The
repulsive Fermi gas is metastable for observation when it is
far away from the resonant regime, and has been successfully
reached in the recent experiment [17].

We choose the following typical experimental param-
eters for quasi-2D system considered here. We consider
about 10* “°K atoms in a pancake-shaped harmonic po-
tential with the trapping frequencies 27 x (10,10,400) Hz
along the (X,¥,Z) direction. The system size is estimated as
(37.8,37.8,5.98) um. The strength of SOC y is chosen as 0.5
and a; is tuned to 2.7ay (within the normal-state regime) with
Feshbach resonance. For the parameters used here, we estimate
that the zero sound velocity is about 1.1vg, and the energy
gaps for the gapped modes are A7 = Ap = 1.2lepand Ay =
0.42¢p. The Fermi velocity v is about 0.028 m/s and the
Fermi energy ey = h x 33.36 kHz. Furthermore, the realistic
system is prepared in a trap. The results for a uniform system
can be used only if the wavelength of the excitation is much
smaller than the trap size. To go beyond the low-g regime,
we show the dispersion relations of the collective modes in
Fig. 7 for typical experimental parameters. To observe these
dynamical oscillations in experiment, we suggest the following
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methods: (i) The gapless mode could be excited by a short laser
pulse focused near the center of the trap [60]. The oscillation
could be detected via the spatially resolved images of the
coupled density and transverse spin perturbances propagating
through the trapped atomic cloud [61]. (ii) The gapped modes
are spin oscillations, which are actually the oscillations of
the internal hyperfine states of atoms. The oscillations could
be excited via a two-photon drive, and traced out through the
state-selective absorption imaging method and repeating the
experiment for many values of evolution time [61,62].

In summary, we studied the collective modes of spin-orbit-
coupled Fermi gas with repulsive s-wave interaction. There
are two categories of collective modes in this system. One
branch has a gapless dispersion, known as the zero sound.
In presence of SOC, the density oscillation is intrinsically
coupled with the transverse spin oscillation for this mode.
The other three branches are collective excitations with finite
energy gaps, which are closely related to the energy split due
to SOC. We calculated the sound speed of the gapless mode
and the energy gaps of the gapped modes, and also estimated
their values for typical experimental parameters. In contrast to
the Coulomb interaction in 2D solid-state systems, the s-wave
interaction leads to fundamentally different phenomena, such
as the presence of linear dispersion of the zero sound and
the gapped modes. The study on the collective modes of the
SOC repulsive Fermi gas indicates some novel behaviors due
to the presence of SOC, and also might have the immediate
applicability to experimental study of the SOC Fermi gases in
the upper branch of the energy spectrum.

ACKNOWLEDGMENTS

We acknowledge helpful discussions with H. Pu, C. Wu,
and G. Juzelitinas. This work was supported by the NKBRSFC
under Grants No. 2011CB921502, No. 2012CB821305, No.
2009CB930701, and No. 2010CB922904, NSFC under Grants
No. 10934010, No. 11228409, No. 61227902, and No. NSFC-
RGC, under Grants No. 11061160490 and No. 1386-N-
HKU748/10. J.Y. was supported by Grants No. NSF-No.
DMR-1161497, No. NSFC-11074173, and No. 11174210,
Beijing Municipal Commission of Education under Grant No.
PHR201107121, and at KITP was supported in part by the
NSF under Grant No. PHY11-25915.

APPENDIX A: EVALUATIONS OF SOME
RELEVANT INTEGRALS

When we calculated the density and spin susceptibility in
Sec. III, we found some integrals of the azimuthal angle 8, such
as lo,I1,15,13,14,1s. Since they have the similar structures,
we evaluate them in this appendix. The definitions of these
integrations are listed below:

deo 1

L= | ———————. (A1)
27y —cosf 4+ i0t
deo cos 6

L (y)= (A2)

27y —cosf +i0t
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FIG. 8. Schematic of the integral path and the poles of the
integrand functions. The location of the poles are different for |y| > 1
and |y| < 1, which are shown in (a) and (b) respectively.

do cos? 6
I =) - A3
2 () 2wy —cosf +i0t (A3)
L) = do cos’ 6 (A4)
3= 27 y —cosf +i0t’
L) = do sin” 6 (AS)
A= 27y —cosf +i0+’
I )_/d@ cos @ sin’ 6 (A6)
SW= 21 y —cosf +i0+’

At first we note that if |y| < 1, these integrals have a nonzero
imaginary part; if |y| > 1, these integrals are real. This can
be seen from the following calculation. This property results
in the damping of the collective modes in the particle-hole
excitation continuum.

These integrals can be mapped into the integrals in the
complex-z plane with a transformation z = . The integral
path C is the unit circle with the center at (0,0). We show
the integral path and give a schematic of the poles of
the integrand function for |y| > 1 and |y| < 1 in Fig. 8.
With the theorem of residue, these integrals are evaluated
straightforwardly:

sgn(y) i
Iy (y) = \/y2—7_1®(|y| -1 - \/1—_7))29(1 - Iyl), (A7)
ho)=-1+ \/%(E(Iyl -1- %@(1 ~ ).
(A8)
h(y) = y+—ﬂ@(|y|—1)—i—i®<1—|yb
(A9)

By =—3 -7+ fz—'il@(m )
y J—
i 3

——@(1 —1lyD, (A10)

/1 —
I4(y) = y—sgn(y)y/ y* — 9(|y|—1)—l\/1 y20(1 — |y,

(Al1)
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——+y IyIvy* =10yl =1
—iyy1=y*0( = y)),

where ®(x) is the unit step function. When we were exploring
the low-g behaviors of gapped modes in the region g < kg,
we used the asymptotic behaviors at |y| — oo:

Is(y) =

(A12)

1 1 1
Io(y) ~ —, L) =5 L(y) >~ ——,
y 2y 2

(A13)

I5(y) = —.

3
I ~
3 () = 8,2’ 8,2

1
Iy (y) = 5,

APPENDIX B: EQUIVALENCE BETWEEN THE RASHBA
SOC AND DRESSELHAUS SOC

We start with the single-particle Hamiltonian wtih Dressel-
haus SOC [13],

2

k
Hp = om + a(—kyo,

—kyoy) — . (B1)
The various quantities calculated in this paper are closely
based on the well-defined Feynman rules. The Feynman rules
include the single-particle Green’s function and the interaction
vertex. Within the scheme of RPA, the collective modes are
determined by the poles of the RPA susceptibility, which are
given by (8). It is apparent that the properties of the collective
modes depend on the bare susceptibility x (K,w). Therefore,
we want to derive the relationships between the two types of
SOC system as follows.

For the Dresselhaus-type SOC, the noninteracting Green’s
function and the interaction vertex reads

PD
GD ’ s) = +7 B2
(@,Exs) ;w_&ﬁiw (B2)
D _ D D
V2060, @) = 2fD Ox.Okrq) £ Op.0p—q),  (B3)

where the upscript D represents the Dresselhaus-type SOC,
and PP is the projection operator defined as

PP = J[1+ s(—kyo, — ke0y)]. (B4)

The energy spectrum of the Dresselhaus-type SOC is the

same with the Rashba type. However, the spin polarization
is different from Rashba SOC, which is

= 3[1 + s(—kyo, + ke0y)]. (B5)

The trace in Eq. (10) includes an overlap factor for the
Dresselhaus case as

FPM =tr [PP (k—q/2)0, PP k+q/2)0,]. (B6)

Given Egs. (B4) and (BY), the overlap factor for the two cases
can be related by transformation k, — —k,,q, — —¢y, while
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keeping the y component invariant. The bare susceptibility
with Dresselhaus SOC is given by

KPP (o) = — S FDw fEk—q2.s) — f(€k+q/2,r‘) '
P Ek—q/2.5 — Ekiq2r + @ + 00T

(B7)

Due to the rotation symmetry, we choose q = ge, for

simplicity. Given the relationship between the overlap factor

PHYSICAL REVIEW A 87, 063623 (2013)

for Rashba SOC and Dresselhaus SOC and the rotational
symmetry of the energy spectrum, we have

x P (gey,0) = x 1 (gey,w). (B8)

Therefore we conclude that all the properties and classification
of the collective modes for the two types of SOC are all the
same exactly.
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