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Quantum correlating power of local quantum channels
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We define quantum-correlating power (QCP) of a local quantum channel acting on the left part of a bipartite
quantum system as the maximum amount of left quantum correlation that can be created by this channel. We
prove that for any local channel, the optimal input state, which corresponds to the maximum quantum correlation
in the output state, must be a classical-classical state. Further, the single-qubit channels with maximum QCP
can be found in the class of channels which take their optimal input states to rank-two quantum-classical states.
A superactivation property of QCP, that is, two zero-QCP channels can constitute a positive-QCP channel, is
observed and discussed for single-qubit phase damping channels. The analytic expression for QCP of single-qubit
amplitude damping channel is obtained.
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I. INTRODUCTION

The quantum nature of correlation goes beyond quantum
entanglement. There are separable states that contain correla-
tion with no classical counterpart. Researches show that such
separable states can still be useful for quantum computation
[1], quantum state discrimination [2], and quantum commu-
nication [3–6]. The importance of quantum correlation also
lies in its close connection to quantum entanglement [7–10].
Since the fundamental role of quantum correlation in quantum
mechanics and its potential key role in quantum information
processing, various ways for detecting and measuring the
quantum correlation have been proposed [11–15]. The dy-
namics of quantum correlation under noise are also studied
theoretically [16] and experimentally [17].

Creation of entanglement requires coherent operations on
two parties. In order to quantify the ability of an operation
to generate entanglement, quantum entangling power was
defined [18] and attracted much attention. Contrary to en-
tanglement, local operations alone can turn some classically
correlated states into states with positive quantum correlation
[19–24]. In particular, any separable state with positive quan-
tum discord can be produced by local positive operator-valued
measure (POVM) on a classical state in a larger Hilbert space
[25]. The criteria for checking whether a local trace-preserving
operation is able to generate quantum correlation have been
obtained very recently for both single-qubit channels [19]
and quantum channels of arbitrary finite dimension [20,21].
The fact of local creation of quantum correlation provides
an opportunity to prepare a quantum-correlated state at no
communication cost by modifying the local environment or
actively performing local operations. Since no entanglement
can be generated by local channels, this is a good regime for
studying the fundamental properties of quantum correlation
beyond entanglement. Considering the above problems, we
ask the following question: How much quantum correlation
can be built by local operation?

In this paper, we provide an answer to this question by
introducing the concept of quantum-correlating power (QCP)
for a local quantum channel, which is defined as the maximum
quantum correlation that can be generated by the channel.
QCP is an intrinsic attribute of a quantum channel, which
quantifies the channel’s ability to create quantum correlation.

Some basic properties of QCP are explicitly studied. For
any local channel, the input state which corresponds to the
maximum quantum correlation in the output state is proved to
be a classical-classical state. Further, the quantum state with
maximum quantum correlation obtained by local operation on
a two-qubit classical-quantum state can be found in the class
of rank-two quantum-classical states. An interesting effect that
two zero-QCP channels can constitute a positive-QCP channel
is observed, which is named the superactivation of QCP. It
implies that using two channels together is more efficient in
creating quantum correlations than using them separately. As
a by-product, we find a class of four-qubit states, where any
two of the four qubits are not correlated at all but the quantum
correlation between the bipartition AA′:BB ′ is not zero. These
states are potentially useful for protocols where two parties
have to cooperate to complete the task.

II. QUANTUM-CORRELATING POWER
AND OPTIMAL INPUT STATE

Generally, a state is said to have zero quantum correlation
on A if and only if there is a measurement on A that does not
affect the total state. Such states are called classical-quantum
states. We label C0 as the set of all classical-quantum states.
Then C0 can be written as [26]

C0 =
{

ρ|ρ =
∑

i

qi�
A
αi

⊗ ρB
i

}
, (1)

where {�A
αi

= |αi〉〈αi |} are a set of orthogonal basis of part A.
Various measures for quantifying quantum correlation have

been proposed. For example, quantum discord [11] is defined
as the minimum part of the mutual information shared between
A and B that cannot be obtained by the measurement on A :
δB|A(ρ) = min{FA

i } SB|A(ρFA
i B) − SB|A(ρ), where SA|B(ρ) =

S(ρ) − S(ρB ) with S(ρ) = −Tr(ρ log2 ρ) is conditional en-
tropy, {FA

i } is a POVM on qudit A, and ρFA
i B = ∑

i F
A
i ρF

A†
i

is the state of qudits A and B after the POVM. Another example
is the distance-based measure of quantum correlation [19]
QD(ρ) = minσ∈C0 D(ρ,σ ), where the state distance satisfies
the property that D does not increase under any quan-
tum operation. Trace-norm distance D1 = Tr|ρ − σ |/2 with
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|Ô| =
√

Ô†Ô and relative entropy S(ρ ‖ σ ) = Tr[ρ(log2 ρ −
log2 σ )] are examples satisfying this property [27]. One-way
quantum deficit �←

B|A = min{�A} S(ρ�A
i B) − S(ρ) is in fact

the minimum relative entropy to classical-quantum states
[28] and thus belongs to this class of quantum correlation
measure. Notice that the measures of quantum correlation are
asymmetric for A and B. Here and hereafter, we discuss only
the quantum correlation defined on A.

The measure of quantum correlation Q we discuss here
satisfies the following three conditions: (a) Q(ρ) = 0 iff
ρ ∈ C0; (b) Q(UA ⊗ UBρU

†
A ⊗ U

†
B) = Q(ρ) where UA and

UB are arbitrary local unitary operators on A and B;
(c) Q(I ⊗ �B(ρ)) � Q(ρ). Conditions (a) and (b) are satisfied
by most of the quantum correlation measures. It has been
proved that quantum discord satisfies condition (c) [8]. Here
we briefly prove that QD satisfies condition (c). Suppose the
closest classical-quantum state to ρ is labeled as σ ; then we
have QD(ρ) = D(ρ,σ ) � D(�B(ρ),�B(σ )) � QD(�B(ρ)).
The last inequation holds because �B(σ ) is still a quantum-
classical state, but may not be the closest one to �B(ρ). It
should be noticed that geometric quantum discord does not
satisfy condition (c), and the counterexample will be shown
later in this paper. Now we are ready to define quantum-
correlating power.

III. DEFINITION (QUANTUM-CORRELATING POWER)

The quantum-correlating power of a quantum channel is
defined as

Q(�) = max
ρ∈C0

Q(� ⊗ I (ρ)), (2)

where Q is a measure of quantum correlation which satisfies
conditions (a)–(c).

The input state ρ ∈ C0 that corresponds to the maximization
in Eq. (2) is called the optimal input state. Here we give a
general form of the optimal input state.

Theorem 1. For any d-dimensional local channel acting
on A, The optimal input classical state with the maximum
amount of quantum correlation in the output state is a classical-
classical state of form

	 =
d−1∑
j=0

qj�
A
αj

⊗ �B
βj

, (3)

where {�B
βj

= |βj 〉〈βj |} is the orthogonal basis for the Hilbert
space of qudit B.

Proof. Consider a classical-quantum state 	′ ∈ C0 as input
state. After a local channel on A, the state becomes

ρ ′ =
∑

i

qi�
(
�A

αi

) ⊗ ρB
i . (4)

For input state 	 as in Eq. (3), the corresponding output state
is

ρ =
∑

i

qi�
(
�A

αi

) ⊗ �B
βj

. (5)

We first prove that ρ ′ can be prepared from ρ by a local
operation on B. Writing the d states of qudit B in Eq. (4) as
ρB

k = ∑d−1
i=0 λ

(k)
i |φ(k)

i 〉B〈φ(k)
i |, k = 1, . . . ,d, we find a channel

�B(·) = ∑d−1
i=0

∑d
k=1 λ

(k)
i E

(k)
i (·)E(k)†

i with E
(k)
i = |φ(k)

i 〉〈βk|,
such that �B(�B

βj
) = ρB

k . It means that ρ = I ⊗ �B(ρ ′).
Noting that local operation on B can never increase the
quantum correlation on A, we have Q(ρ) � Q(ρ ′). It means
that for any state ρ ′ in the form of Eq. (4), we can always find
a state ρ in the form of Eq. (5) whose quantum correlation is
larger than ρ ′. Therefore, the optimal input state must be in
the form of Eq. (3). This completes the proof of Theorem 1.

IV. CHANNELS WITH MAXIMUM QCP

We have investigated the maximum quantum correlation
that can be created by a specific local channel. It is also
interesting to ask the following question: How much quantum
correlation can be generated from a classical state when all the
local quantum operation is allowed? In this section we focus
on finding the single-qubit channels with maximum QCP.

Lemma 1. For any two states of a qubit ρj , j = 0,1, there
exist two pure states |ψ〉 and |φ〉, such that ρj = pj |φ〉〈φ| +
(1 − pj )|ψ〉〈ψ |, where 0 � pj � 1, j = 1,2.

Proof. We discuss this problem in the Bloch presenta-
tion: ρj = (I + 	cj · 	σ )/2, j = 1,2, |ψ〉〈ψ | = (I + 	a · 	σ )/2,
and |φ〉〈φ| = (I + 	b · 	σ )/2, where 	σ = {σx,σy,σz} are Pauli
matrices, 	cj = Tr(ρj 	σ ), 	a = 〈ψ |	σ |ψ〉, and 	b ≡ 〈φ|	σ |φ〉.
Lemma 1 is proved by noticing the fact that 	a and 	b are just
the two intersections of the Bloch sphere surface and the line
c1c2, where c1c2 is the line fixed by the two points 	c1 and 	c2.
Now we are ready to prove the second central result of this
paper.

Theorem 2. The local single-qubit channel with maximum
QCP can be found in the set of channels

D0 =
{

�|�(·) =
1∑

i=0

Ei(·)E†
i ,Ei = |ψi〉〈αi |

}
, (6)

where |ψ0〉 and |ψ1〉 are two nonorthogonal pure states.
Proof. In order to find out the maximum-QCP qubit channel,

we first prove that the optimal output two-qubit state, which
contains the maximum quantum correlation created by local
operations on a classical-classical state, can be found in the
subset of the rank-2 quantum-classical state

C̃0 ≡
{

ρ̃|ρ̃ =
1∑

i=0

pi |ψii〉〈ψii|
}

. (7)

Consider the optimal input state as in Eq. (3) and the corre-
sponding output state as in Eq. (5) with d = 2. According to
Lemma 1, each ρj ≡ �(�A

αj
) (j = 0,1) can be decomposed as

ρj = ∑1
i=0 p

(j )
i |ψi〉〈ψi | with |ψ0〉 and |ψ1〉 two nonorthogonal

pure states, and consequently, Eq. (5) can be written as

ρ =
1∑

i=0

pi |ψi〉〈ψi | ⊗ ξi, (8)

where pi = ∑1
j=0 qjp

(j )
i and ξi = (

∑1
j=0 qjp

(j )
i �B

βj
)/pi for

i = 0,1. From the proof of Theorem 1, any state ρ in form
of Eq. (8) can be obtained from ρ̃ in Eq. (7) by some local
operations on B. Therefore, the optimal output state can be
found in C̃0. Further, for any output state ρ̃ ∈ C̃0, we can find a
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channel � ∈ D0 which takes a classical input state to ρ̃. This
completes the proof of Theorem 2.

Based on Theorem 2, we derive the local single-qubit
channel with the maximum QCP based on quantum discord.
We first need to find ρ̃ = p0|00〉〈00| + p1|φ1〉〈φ1| in C̃0

which contains the maximum quantum discord. By using the
Koashi-Winter relation [29]

δB|A = EBC + SB|C, (9)

where EBC is the entanglement of formation between
qubits B and C, and qubit C is the purification of state
ρ̃: |�〉ABC = √

p0|000〉 + √
p1|φ11〉, we have δB|A(ρ̃) =

h (
√

sin2 φ − t2 cos2 φ ) + h (
√

cos2 φ − t2 sin2 φ ) − h(t),
where h(x) = − 1+x

2 log2
1+x

2 − 1−x
2 log2

1−x
2 , and t = p0 −

p1. δB|A(ρ̃) reaches its maximum at φ = π/4 and t = 0.
Therefore, the channels with maximum QCP should satisfy
�max(|φ〉〈φ|) = |φ〉〈φ| and �max(|φ + π/2〉〈φ + π/2|) =
|φ + 3π/4〉〈φ + 3π/4|. It is direct to write a class of
maximum-QCP channels, which are unitarily equivalent to
�̃(·) = ∑1

i=0 Ẽi(·)Ẽ†
i , where

Ẽ0 = |0〉〈0|,Ẽ1 = |+〉〈1|, (10)

and the corresponding QCP is

Qδ(�max) = 2h

(
1√
2

)
− 1 ≈ 0.2017. (11)

It is worth mentioning that there are separable states
containing larger quantum discord. For example, for sep-
arable state ρ = (|�+〉〈�+| + |�−〉〈�−|)/4 + |�+〉〈�+|/2
with |�±〉 = (|00〉 ± |11〉)/√2 and |�+〉 = (|01〉 + |10〉)/√2
three Bell states, the quantum discord is δ(ρ) = 3(2 −
log2 3)/4 ≈ 0.311, according to the result of Ref. [30]. Such
states cannot be prepared by local operations from a single
copy of a two-qubit classical state. It has been shown in
Ref. [31] that the states that can be created from a classical-
quantum state by local operations have measure zero. Our
result shows that there is a threshold on the amount of quantum
correlation that can be created locally from a classical-quantum
state.

An interesting question is that whether the states created
from classical states by local channel are useful in concrete
tasks. The answer is that it depends on the tasks. They are
useless for quantum entanglement distribution but can be
useful for remote state preparation (RSP). For entanglement
distribution, Alice owns qubits A and C initially and sends
the qubit C to Bob who owns qubit B, in order to build
the entanglement between Alice and Bob. The distributed
entanglement is upper bounded by the one-way quantum
deficit defined on C [3,5]: EA|BC − EAC|B � �AB|C . Now
assume that the initial state of the three qubits has zero
�AB|C , and Alice sends the qubit C through a noisy channel,
which generates nonzero one-way deficit �′AB|C . However,
the output entanglement E ′A|BC cannot be increased by the
noisy channel, and consequently E ′A|BC � EA|BC � EAC|B .
Therefore, the locally created one-way deficit �′AB|C cannot
be used for entanglement distribution.

On the other hand, locally created quantum correlation
can be useful in remote state preparation. Consider the
general form of a two-qubit state in decomposition of local

Pauli matrices ρAB = [I ⊗ I + ∑3
i=1 riσi ⊗ I + ∑3

j=1 siI ⊗
σi + ∑3

i,j=1 Tijσi ⊗ σj ]/4. The correlation tensor T̂ can be
diagonized by local unitary transformations of qubits A and
B, and therefore, T̂ = diag[T1,T2,T3], where T 2

2 ,T 2
3 � T 2

1 . For
a classical state, T2 = T3 = 0. It has been proved that the
fidelity of RSP is F(ρ) = 1

2 (T 2
2 + T 2

3 ) [4], which is positive
as long as the state is not a classical state. It means that locally
created quantum correlation can be used as a resource for
remote state preparation. Here we calculate the RSP fidelity for
state ρ = (|00〉〈00| + | + +〉〈+ + |)/2, which can be obtained
locally from a classical state, and get F(ρ) = 1/8. It can be
proved that it is the maximum RSP fidelity achieved by a
separable state. This implies that, even though one cannot
prepare most of the separable state locally, the states locally
prepared from classical states can achieve as much RSP fidelity
as any separable state can do.

V. SUPERACTIVATION OF QCP

We will identify an interesting property of QCP. Consider
two classical-quantum states ρAB and ρA′B ′ with qubits A and
A′ at one site and qubits B and B ′ at another. A local two-qubit
unitary operator acting on qubits A and A′ can activate two
zero-QCP single-qubit channels into a positive QCP two-qubit
channel. We call this phenomenon the superactivation of QCP.

We here give an example of a phase-damping (PD) channel
to show exactly how this property works. The Kraus operators
of a PD channel are EPD

0 = |0〉〈0| + √
1 − p|1〉〈1| and EPD

1 =√
p|1〉〈1|. Clearly, PD channel is a mixing channel, which

means that quantum correlation cannot be created when a
single copy of a classical-quantum state is considered.

Now consider the initial state of qubits A and BρAB =
1
2

∑1
i=0 |i〉A〈i| ⊗ |i〉B〈i|. Qubits A′ and B ′ are in the same

state; then the total state of the four qubits is

ρ = ρAB ⊗ ρA′B ′ = 1

4

∑
i,j

|ij 〉AA′ 〈ij | ⊗ |ij 〉BB ′ 〈ij |. (12)

Now apply a two-qubit unitary operation U : U |ij 〉= |ψij 〉
on qubits A and A′, where |ψ00〉 = 1√

2
(|00〉 + |11〉),

|ψ11〉 = 1√
2
(|0+〉 + |1−〉), |ψ01〉 = 1√

2
(|01〉 − |10〉), and

|ψ10〉 = 1√
2
(|0−〉 − |1+〉). Then qubits A and A′ each

transmits through a PD channel, and the output state
becomes ρ ′ = �PD

A ⊗ �PD
A′ ⊗ IBB ′ (UAA′ρU

†
AA′). Now we

check whether quantum correlation defined on AA′ is created
between the bipartition AA′:BB ′ by using the criterion in
Ref. [20]. Notice that [�PD ⊗ �PD(ψ00),�PD ⊗ �PD(ψ11)] =
1
8 ĩp

√
1 − p(σy ⊗ σ z + σz ⊗ σy) 
= 0, and consequently,

quantum correlation is created between the bipartition
AA′:BB ′.

The superactivation of QCP is a collective effect. The
reduced two-qubit states ρ ′

AB = TrA′B ′(ρ ′) = (IA/2) ⊗ ρB and
ρ ′

A′B ′ = TrAB(ρ ′) = (IA′/2) ⊗ ρB ′ are product states, which
contain no correlations at all. The local two-qubit unitary
operation U does not build correlations between qubits A and
A′, since a reduced state of qubits A and A′ remains completely
mixed during the whole process. All in all, no correlation exists
between any two qubits of the four-qubit state ρ ′. Therefore,
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we suppose that the effect of superactivation of QCP is due to
the genuine quantum correlation.

VI. QCP OF AMPLITUDE DAMPING CHANNEL

Here we calculate the QCP of a single-qubit ampli-
tude damping (AD) channel as a concrete example. The
AD channel �AD = ∑1

i=0 EAD
i (·)EAD†

i with EAD
0 = |0〉〈0| +√

1 − p|1〉〈1| and EAD
1 = √

p|0〉〈1|, describes the evolution
of a quantum system interacting with a zero-temperature bath.
We will choose quantum discord and one-way quantum deficit
as measures of quantum correlation in Eq. (2).

According to Theorem 1, the optimal input state should
be of the form ρ = q1|θ〉〈θ | ⊗ |0〉〈0| + q2|θ + π

2 〉〈θ + π
2 | ⊗

|1〉〈1|, where |θ〉 = cos θ |0〉 + sin θ |1〉. Intuitively, q1 = q2 =
1/2 should be chosen to maximize the initial classical
correlation, while θ = π/4 should hold such that the coherence
between the two energy levels |0〉 and |1〉 of qubit A is max-
imized. These are verified by numerical results. Depending
on the above discussions, the analytical expression of QCP
defined on quantum discord and one-way quantum deficit is,
respectively,

Qδ(�AD) = h(p) + h(
√

1 − p) − h(
√

1 − p + p2) − 1,

Q�(�AD) = min

{
h

[
h(t1) + h(t2)

2

]
,h(

√
1 − p),h(p)

}

−h(
√

1 − p + p2), (13)

where t1 = √
1 − p sin 2χ + p cos 2χ , t2 = √

1 − p sin 2χ −
p cos 2χ , and χ satisfies

tan 2χ =
√

1 − p log2
(1+√

1−p sin 2χ)2−(p cos 2χ)2

(1−√
1−p sin 2χ)2−(p cos 2χ)2

p log2
(1+p cos 2χ)2−(

√
1−p sin 2χ)2

(1−p cos 2χ)2−(
√

1−p sin 2χ)2

. (14)

The optimal measurement basis {|χ〉,|χ + π/2〉} in the def-
inition of one-way quantum deficit changes gradually from
{|+〉,|−〉} to {|0〉,|1〉}, while for quantum discord, the optimal
measurement basis is always {|+〉,|−〉}. In Fig. 1 we plot the
QCP of an AD channel.
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FIG. 1. (Color online) Quantum-correlating power of amplitude
damping channel against the parameter p of AD channel. The dashed
(blue) and solid (red) lines are, respectively, the QCP based on one-
way quantum deficit and quantum discord.

In the following, we will show that a local channel acting
on qubit B can increase the geometric discord. Consider AD
channel with 0 < p2 < 1 − p acting on qubit A of the input
state ρ = (| + 0〉AB〈+0| + | − φ〉AB〈−φ|)/2, where |φ〉 =
|φ̃〉 is a pure state satisfying 〈φ̃|σ3|φ̃〉 = −[3p2 − (1 − p)]/
[p2 + (1 − p)]. The geometric quantum discord that can be
created by the channel is Qmax

G = p2(1−p)
2[p2+(1−p)] . However, when

we consider input state with |φ〉 = |1〉, the corresponding
geometric quantum discord that can be created is QG =
p2/4 < Qmax

G . It means that a local operation on B with Kraus
operators E0 = |0〉〈0| and E1 = |φ̃〉〈1| can increase geometric
discord on A. Consequently, the geometric discord does not
satisfy the condition (c) and thus is not a proper quantum
correlation measure in the definition of QCP. In fact, there
are other works showing that the geometric discord can be
increased by simply taking away a mixed ancillary qubit on
B side, which is uncorrelated to the system [32,33]. In our
example, the geometric discord can be increased even when
the dimension of part B does not change.

VII. CONCLUSIONS AND DISCUSSIONS

We have introduced quantum-correlating power in quan-
tifying the ability of a local quantum channel to generate
quantum correlation from a classically correlated state. For
any channel, the general form of the optimal input state has
been proved to be the classical-classical state. Furthermore, the
single-qubit channels with maximum QCP can be found in the
class of local channels which takes a classical-classical state to
a rank-two quantum-classical states. The explicit expression
for QCP of a single-qubit AD channel has been obtained.
Interestingly, when two zero-QCP channels are used together,
a positive-QCP channel can be obtained. We call this effect the
superactivation of QCP, which implies that using two channels
together is more efficient in creating quantum correlations than
using them separately. In the example of PD channel, we find
a four-qubit state with genuine four-qubit quantum correlation
but zero two-qubit correlation. This result should be helpful in
the study of quantum correlating structure in multiqubit states,
as well as potentially useful for protocols where two parties
have to cooperate to complete the task.

When a channel � with positive QCP is applied to a
proper classical state, the classical correlation decreases while
a quantum correlation is created. In this sense, we may
roughly say that the classical correlation can be converted to
quantum correlation by a local channel. We know that quantum
correlation is the same as the well-accepted entanglement for
pure states but closely related to and going beyond it for mixed
states. It is responsible for the advantages presented in some
quantum algorithms. The QCP proposed in this paper may
provide a criteria in classifying quantum channels and further
may act as a benchmark in designing quantum channels which
can create quantum correlation. It may shed light on the study
of the fundamental of quantum correlation and on laboratory
state preparation.
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