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Dipole-dipole interaction in a photonic crystal nanocavity

Yong-Gang Huang,1,2 Gengyan Chen,1 Chong-Jun Jin,1 W. M. Liu,2 and Xue-Hua Wang1,*

1State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

(Received 22 January 2012; published 22 May 2012)

We put forward a general classical approach to obtain the quantum dipole-dipole interaction (DDI) between
two two-level “atoms” in arbitrary nanostructures, in which the transfer rate of the DDI is analytically expressed
as the difference between the two classical dipoles’ total radiation power and the sum of the two individual
dipole’s radiation powers. The radiation power can be calculated by the finite-difference time-domain method.
We apply the theory to investigate the DDI in a photonic crystal nanocavity. It is found that strong DDI at a
distance can be achieved under resonant conditions and with a high quality factor, and the attractive or repulsive
properties of the DDI can be manipulated. Our results should be significant for solid-state quantum-information
processing based on the DDI.
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I. INTRODUCTION

Since Purcell predicted that the spontaneous emission rate
could be changed by the electromagnetic environment in 1946
[1], the effect of electromagnetic fields on radiation properties
has been thoroughly investigated [2–10] and classified in
the category of cavity quantum electrodynamics (QED). The
characteristics of QED have been much investigated both
theoretically and experimentally [11–17], and many kinds
of devices [18,19] based on this theory have been devel-
oped. Concepts such as enhanced and inhibited spontaneous
emission [4,5], reversible spontaneous emission [8], photon
blockade [13], the one-atom maser [20], low-threshold lasers
[21,22], etc., have become very familiar.

The quantum dipole-dipole interaction (DDI) could also
be greatly modulated by the electromagnetic environment.
Two two-level atoms with one excited and the other in the
ground state can interact with each other through photon
exchange. A photon emitted by the excited atom could be
absorbed by the other atom in the ground state. The transfer
rate and the DDI potential energy are determined by the
rates of photon emission, transmission, and absorption. Many
different kinds of electromagnetic environment have been
used to control or change these characteristics, such as the
vacuum [3,23–26], optical cavities [27–30], an optical lens
[31], a dielectric droplet [32], photonic materials [33–39],
metal surfaces [40–44], metamaterials [45,46], and so on. For
example, optical lenses and waveguides have been designed to
collect the emitted photon and transfer it to the other dipole.
An optical cavity or metal surface can enhance the emission
or absorption rate roughly by the ratio of the quality factor Q

and the mode volume V .
Photonic crystal nanocavities are one promising platform

to investigate the quantum DDI. It can tailor the local coupling
strength between the dipole and electromagnetic field and is
extremely convenient to integrate with the photonic crystal
waveguide. A high quality factor Q = 2.5 × 106 and small
mode volume V ∼ (λ/n)3 have been realized for a photonic
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crystal cavity [47]. Numerical investigations show that an
ultrahigh quality factor Q ∼ 109 can be designed through
finely tuning the scattering around the cavity with little
change of the mode volume [48]. Furthermore, static and
ultrafast dynamic control of the resonance frequency and the
quality factor have been achieved [49–53]. On the other hand,
temperature [9], tensile strain [54], electric fields [55], and
magnetic fields [56,57] are more suitable for tuning the energy
levels of semiconductor quantum dots located at a certain
position in a solid system.

Recent studies show that this kind of interaction could
be used to implement quantum entanglement preparation
and quantum information processing [58–65], cooperative
radiation [29,66], Förster energy transfer [67,68], dipole
nanolasers [69], and so on. Furthermore, some novel quantum
phenomena have been found [70–74]. All of these applications
and phenomena are related to the transfer rate or DDI potential
energy.

In previous theoretical studies, either the mode-expansion
method [24,27,28,31–33] or the Green-function method
[30,63–65,75,76] was usually adopted to obtain the transfer
rate and DDI potential energy. These two methods work
well for simple electromagnetic environments. Because of the
extreme complexity of finding the complete eigenmodes, the
mode-expansion method can be used only for simple cases
such as the vacuum or a perfect-conductor planar cavity. In
addition, the exact analytic Green function [63] is also very
hard to obtain for complex electromagnetic environments.
A numerical method is necessary for studying this kind of
interaction in nanostructures with arbitrary geometry.

In this paper, we present a general classical approach
to obtain the quantum DDI in nanostructures with arbitrary
geometry. We analytically derive the expression of the DDI by
the difference between the two classical dipoles’ total radiation
power and the sum of the two individual dipole’s radiation
powers. The radiation powers are obtained by numerically
solving the Maxwell equations with a finite-difference time-
domain (FDTD) algorithm. For two dipoles located in a
photonic crystal nanocavity, the transfer rate and the potential
energy of the DDI strongly depend on the atomic position, the
atomic transition frequency, and the resonance frequency and

053827-11050-2947/2012/85(5)/053827(7) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.053827


HUANG, CHEN, JIN, LIU, AND WANG PHYSICAL REVIEW A 85, 053827 (2012)

A

A
e

A
g

B
g B

B
e

Aω
Bω

nω

FIG. 1. (Color online) Schematic diagram of the DDI. Consider
two two-level “atoms” A and B. Atom A (B) has two states, the ground
state |gA〉 (|gB〉) and the excited state |eA〉 (|eB〉), with a transition
frequency ωA (ωB ). Atom A is in the excited state |eA〉 and atom B is in
the ground state |gB〉. Both of them interact with the electromagnetic
field with eigenfrequency ωn. The two atoms interact with each other
through photon exchange.

quality factor of the cavity. A fast transfer rate can be achieved
if the atomic transition frequency is equal to the resonance
frequency of the cavity. The higher is the quality factor of the
cavity, the stronger is the DDI. By finely tuning the atomic
transition frequency within the linewidth of the cavity mode
around the resonance frequency, the potential energy of the
DDI is varied continuously from the attractive to the repulsive
case.

This paper is organized as follows: The quantum model of
the DDI is given in Sec. II. In Sec. III, we propose a general
classical approach to obtain the quantum DDI. Utilizing the
eigenmode-expansion method, we show that the transfer rate
can be analytically expressed as a function of the emission
power spectrum of classical dipoles. The emission power
spectrum is obtained by calculating the rate at which a current
density source does work against a surrounding electric field
through the FDTD algorithm without any knowledge of the
eigenmodes. In Sec. IV, we apply the theory to investigate
properties of the DDI in a photonic crystal nanocavity. Finally,
a summary is given in Sec. V.

II. QUANTUM MODEL OF DDI BETWEEN TWO ATOMS

The schematic diagram of the DDI is illustrated in Fig. 1.
There are two two-level “atoms” A and B located at rA and rB ,
respectively, and they both interact with the electromagnetic
field with eigenfrequency ωn. Atom A (B) has two states, the
ground state |gA〉 (|gB〉) and the excited state |eA〉 (|eB〉), with
a transition frequency ωA (ωB). The Hamiltonian of the system
in the rotating-wave approximation reads [77]

H = H0 + V,

H0 = h̄
∑

i=A,B

ωi |ei〉〈ei | + h̄
∑

n

ωna
†
nan,

V = h̄
∑

i=A,B

∑
n

[gn(ri)a
†
n|gi〉〈ei | + c.c], (1)

where a
†
n (an) is the photonic creation (annihilation) op-

erator, gn(ri) = iωj (2ε0h̄ωn)−1/2En(ri) · ui (i = A,B) is the
coupling coefficient, ui is the transition dipole moment of
atom i, ε0 is the vacuum permittivity, and En(r) is the electric
field of the eigenmode. In Eq. (1), H0 is the noninteraction

Hamiltonian, and V represents the interaction Hamiltonian.
There are three states for the system considered: (1) atom A is
in the excited state and atom B is in the ground state, without
any photon, i.e., |a〉 = |eA,gB,0〉; (2) atom B is in the excited
state and atom A is in the ground state, without any photon,
i.e., |b〉 = |gA,eB,0〉; (3) both atoms A and B are in the ground
state, with a photon of frequency ωn, i.e., |cn〉 = |gA,gB,1n〉.

The initial state is prepared in |a〉. Then the state vector of
the system evolves as

|ψ(t)〉 = a(t)|a〉 + b(t)|b〉 +
∑

n

cn(t)|cn〉 ≡ U (t)|a〉, (2)

where U (t) is the evolution operator and a(t) = 〈a|U (t)|a〉,
b(t) = 〈b|U (t)|a〉, cn(t) = 〈cn|U (t)|a〉. From the Green-
function expression of U (t), one can show that [78]

U (t) = 1

2πi

∫ +∞

−∞
dω[G−(ω) − G+(ω)] exp(−iωt), (3)

where G±(ω) = limη→0+ G(z = ω ± iη) with the resolvent
operator G(z) = (z − H/h̄)−1. The matrix elements of the
resolvent operator read

(z − ωA)Gaa(z) = 1 +
∑

n

VacGca(z),

(z − ωB)Gba(z) =
∑

n

VbcGca(z),

(z − ωn)Gca(z) = VcaGaa(z) + VcbGba(z), (4)

where Gaa(z) = 〈a|G(z)|a〉, Gba(z) = 〈b|G(z)|a〉, Gca(z) =
〈cn|G(z)|a〉 and Vac = V ∗

ca = 〈a|V |cn〉/h̄, Vbc = V ∗
cb =

〈b|V |cn〉/h̄.
Eliminating Gca(z), we have

Gaa(z) = (z − ωB − WBB)/�,

Gba(z) = WBA/�, (5)

where � is given by

� = [z − ωA − WAA][z − ωB − WBB] − WABWBA (6)

with the local coupling between the atom and the electromag-
netic field (WAA,WBB) or the dipole-dipole coupling between
atoms A and B (WAB,WBA) denoted by

Wij = Wij (z,ri ,rj ) =
∑

n

g∗
n(ri)gn(rj )

z − ωn

. (7)

Clearly, these terms can be written as

W±
ij (ω,ri ,rj ) = 	ij (ω,ri ,rj ) ∓ i


ij (ω,ri ,rj )

2
, (8a)


ij (ω,ri ,rj ) = 2π
∑

n

g∗
n(ri)gn(rj )δ(ω − ωn), (8b)

	ij (ω,ri ,rj ) = 1

2π
P

∫ +∞

0
dz


ij (ω
′
,ri ,rj )

ω − ω
′ . (8c)

For simplicity, we use 
ij (ω) and 	ij (ω) for 
ij (ω,ri ,rj ) and
	ij (ω,ri ,rj ), respectively, in the remainder of this paper.

To better understand the physics underlying these equa-
tions, we give some illustrations. In the extreme case that
there is no DDI between the two atoms, i.e., 
AB = 	AB = 0,
Eq. (5) gives Aba(ω) = 0 and [
AA(ω)/2 + η]/{[ω − ωA −
	AA(ω)]2 + [
AA(ω)/2 + η]2}/π with the matrix element
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of the evolution spectrum defined by Amn(ω) ≡ [G−
mn(ω) −

G+
mn(ω)]/(2πi). It clearly shows that the initial excitation

cannot transfer to atom B, and atom A evolves as an excited
two-level atom. For frequencies inside the photonic band gap,
we have 
AA(ω) = 
BB(ω) = 
AB(ω) = 0. When ωA and ωB

are deep inside the photonic band gap, we can self-consistently
determine the roots of � = 0 [Eq. (6)]. If these roots are inside
the photonic band gap, they are the discrete eigenvalues of the
total Hamiltonian H/h̄. This self-consistent procedure gives
the exact DDI potential energy h̄	AB , which contributes to the
energy level splitting. In this situation, the linear combination
of |a〉 and |b〉 forms the discrete eigenstates of the total
system, which is an entangled state. In the general case where

ij (ω) �= 0 and 	ij (ω) �= 0, the singularity for the resolvent
G(ω) forms a cut. Under the usual Markov approximation
method where Wij (i,j = A,B) are independent of ω and
have been replaced by Wii(ωi) and Wij [(ωi + ωj )/2], we are
also able to determine the roots of � = 0 [Eq. (6)]. These
roots represent the unstable states of the system for the two
atoms. The real part is the energy level while the imaginary part
is the lifetime. Different couplings Wij make the energy level
splitting and the lifetime splitting different, and this is related to
many novel quantum phenomena. Dipole blockade, which has
been widely investigated in quantum information processing,
needs a large energy gap. Efficient superradiant emission,
steady-state entanglement preparation, and fast Förster energy
transfer need a large lifetime splitting. However, for complex
electromagnetic environments such as photonic crystals or
photonic crystal nanocavities, Wij may vary sharply with
frequency and a non-Markov method is necessary. Also, even
under the Markov approximation, the integration part of Eq. (3)
is equal to the residue of these roots minus the contribution
of the other part that closes the contour, which means that
some corrections should be taken into account in addition to
the contribution of the poles to obtain the dynamic properties.
By the method described by Eq. (5), we are able to overcome
the above difficulties and treat the system exactly either in
the strong- or the weak-coupling regime, once we know the
function of Wij . Furthermore, Eq. (7) shows that all of the
photonic eigenmodes contribute to the local coupling and the
DDI. Equation (8c) shows that 	ij (ω) (i,j = A,B) can be
obtained from 
ij (ω) (i,j = A,B).

In the remainder of this section, we give the explicit
expression for 
ij (ω). Insert gn(ri) = iωi(2ε0h̄ωn)−1/2En(ri) ·
ui (i = A,B) into Eq. (8b) for i �= j , and define si,j (ω) ≡
πωiωjuiuj/(ε0h̄ω) (i = A,B), where ui and ûi are the size
and the unit vector of the transition dipole ui . Then we have


ij (ω) = si,j (ω)
∑

n

E∗
n(ri) · ûiEn(rj ) · ûj δ(ω − ωn). (9)

From Eqs. (2.12a) to (2.14a) of Ref. [79], it is easy to see
that if {En(r)} compose a complete set of eigenmodes, {E∗

n(r)}
are also a complete set of eigenmodes. Then Eq. (9) can also
be written as


ij (ω) = si,j (ω)
∑

n

En(ri) · ûiE∗
n(rj ) · ûj δ(ω − ωn). (10)

So we have


ij (ω) = si,j (ω)

2

∑
n

[En(ri) · ûiE∗
n(rj ) · ûj + H.c.]δ(ω − ωn).

(11)

Equation (11) gives the explicit expression of the local
coupling strength for i = j and the transfer rate for i �= j

with the method of mode expansion. In the next section, we
present a classical approach to obtain them without calculating
the complete eigenmodes.

III. A GENERAL CLASSICAL APPROACH
TO OBTAIN QUANTUM DDI

According to Eq. (11), once we know the complete
eigenmodes of the electromagnetic field, we can get the
transfer rate. However, it is much more difficult to obtain
the complete eigenmodes for complex nanostructures. In this
section, we present a classical theoretical method to rigorously
calculate the DDI based on the FDTD algorithm. We will show
that the transfer rate of the DDI can be analytically expressed as
the difference between the two classical dipoles’ total radiation
power and the sum of the two individual dipole’s radiation
powers. In order to find this connection between the transfer
rate in Eq. (11) and the emission power spectrum, we make
use of the eigenmode concept to describe the radiation power
spectrum. However, we need not calculate the eigenmode.
The radiation power is given by the rate at which a current
density source does work against a surrounding electric field
or the surface integral of the normal component of the Poynting
vector on the closed surface containing the dipoles. This can
be directly achieved by solving the Maxwell equations with
the well-known FDTD algorithm. We begin with the Maxwell
equations:

∇ × E(r,t) = −∂B(r,t)
∂t

,

∇ × B(r,t) = μ0ε(r)
∂E(r,t)

∂t
+ μ0

∂P(r,t)
∂t

, (12)

∇ · ε(r)E(r,t) = ρ(r,t),

∇ · B(r,t) = 0.

Expand E(r,t) = ∑
n βn(t)En(r) where En(r) are the same

complete set of eigenmodes as in the quantum analysis section.
If we let the polarization P(r,t) = e−iω0tu(r), then βn(t)
satisfies the following equation:

¨βn(t) + ω2
nβn(t) = ω2

0e
−iω0t

∫
dru(r) · E∗

n(r). (13)

The solution of the above equation reads

βn(t) = lim
η→0+

ω2
0 exp(−iω0t)

ω2
n − (ω0 + iη)2

∫
dru(r) · E∗

n(r). (14)

For u(r) = ∑
i ûiδ(r − ri), the emission power is given by

P (ω0) = −1

2
Re

[∫
dr

∂P∗(r,t)
∂t

· E(r,t)
]

(15a)

= π

4
ω2

0

∑
n

∣∣∣∣∣
∑

i

ûi · E∗
n(ri)

∣∣∣∣∣
2

δ(ω0 − ωn). (15b)
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In the case of two dipoles, i.e., i = A, B, the total power is

P AB(ω0) = π

4
ω2

0

∑
n

∣∣∣∣∣
∑

i=A,B

ûi · E∗
n(ri)

∣∣∣∣∣
2

δ(ω0 − ωn). (16)

If there is only one dipole, i.e., i = A or i = B, then

P A(ω0) = π

4
ω2

0

∑
n

| ûA · E∗
n(rA) |2 δ(ω0 − ωn), (17a)

P B(ω0) = π

4
ω2

0

∑
n

| ûB · E∗
n(rB) |2 δ(ω0 − ωn). (17b)

Combining Eqs. (16), (17a), and (17b), we define the cooper-
ative emission power as

Pco(ω0) ≡ P AB(ω0) − P A(ω0) − P B(ω0)

= πω2
0

4

∑
n

[̂uA · E∗
n(rA )̂uB · En(rB)

+H.c.]δ(ω0 − ωn). (18)

Comparing Eq. (18) with Eq. (11), we find


ij (ω)


0
ii(ω)

= μiμjωiωj

μ2
i ω

2
i

Pco(ω)

2P0(ω)
, (19)

where 
ij (ω) is the transfer rate for i �= j and the local
coupling strength for i = j . Correspondingly, Pco(ω) is the co-
operative emission power of two unit classical dipoles located
at different positions and the same position, respectively. P0(ω)
is the emission power of a unit classical dipole in vacuum.

0

ii(ω) is the local coupling strength for a two-level atom with
transition dipole moment ui and transition frequency of the
bare atom ωi in vacuum.

Using the result of Ref. [8], we get 
0
ii(ω)/(u2

i ω
2
i ) =

ω/(3πε0h̄c3). In order to determine the transfer rate more
clearly, we define

η(ω) ≡ Pco(ω)

2P0(ω)
,

(20)

αi ≡ u2
i ω

2
i

3πε0h̄c3
,

where αi is totally decided by the two-level atom i. Then
Eq. (19) reads


ij (ω) = √
αi

√
αjη(ω)ω. (21)

Equation (21) is the central result of our theory. All the
localized modes, guided modes, and extended modes are
inherently included in the emission power spectrum. Although
we have used the eigenmode concept to derive the connection
between the transfer rate and the emission power spectrum,
we emphasize that the complete eigenmodes need not be
calculated. The emission power spectra Pco(ω) and P0(ω)
of the classical dipoles can be obtained from Eq. (15a) by
calculating the rate at which a current density source does work
against a surrounding electric field through the well-known
FDTD algorithm. Once we get the transfer rate, we can
obtain the DDI potential energy 	ij (ω) through Eq. (8c).
Furthermore, we find that our method may be generalized to
study many-dipole interactions through a similar procedure.

IV. DDI IN A PHOTONIC CRYSTAL NANOCAVITY

In this section, the DDI in a photonic crystal (PC)
nanocavity is numerically studied. A sketch of the photonic
crystal cavity is displayed in Fig. 2. It consists of a thin
dielectric slab with air holes arranged as a triangular lattice.
The lattice constant is a, the radius of the air holes is r = 0.3a,
and the slab height is d = 0.6a. The refractive index of the
slab is 3.4. There is a defect hole in the center with refractive
index ndef = 2.4. Its radius is the same as that of the air holes.
The two dipoles are located at points A and B on the center
plane of the slab, and the two transition dipole moments are
parallel to the x axis. The origin of the axes is set at the
center of the PC cavity. For convenience, the special points are
also drawn in Fig. 2. Atom A is located at (0, − 11/15,0)a
and atom B at (0,R − 11a/15,0), where R represents the
separation and varies from a/15 to 50a/15. The two transition
dipole moments are parallel to the x axis. Thanks to the
scaling law, the transfer rate 
ij (ω), dipole-dipole interaction
potential energy 	ij (ω), and frequency ω in units of 2πc/a

are dimensionless.
The frequency-dependent characteristics for the transfer

rate 
ij (ω) and the DDI potential energy 	ij (ω) are presented
in Figs. 3(a) and 3(b) for atom A located at (0, − 11/15,0)a
and atom B located at (0,11/15,0)a. 
ij and �ij are in
units of αij (αij ≡ √

αi
√

αj 2πc/a). The insets show the
behaviors for frequency around the resonance frequency
[ωc = 0.3133(2πc/a)]. From Fig. 3(a), we clearly see that

ij (ω) oscillates remarkably when ω is far away from
ωc, which shows the powerful modulation ability of the
photonic crystal for the electromagnetic eigenmode and the
density of photonic states. For ω = ωc (inset), 
ij (ωc) ≈
144
0 for a relatively large atomic separation (R ≈ 0.46λ0),
where λ0 is the resonance wavelength of the cavity and 
0

d= 0
.6a

X

Y

A

B

A

B

x

yr  = 0 . 3 a a

FIG. 2. (Color online) Sketch of the photonic crystal nanocavity.
It consists of a thin dielectric slab with air holes arranged as a
triangular lattice. The lattice constant is a, the radius of the air holes is
r = 0.3a, and the slab height is d = 0.6a. The refractive index of the
slab is 3.4. There is a defect hole in the center with refractive index
ndef = 2.4. Its radius is the same as that of the air holes. The origin
of the axes is set at the center of the photonic crystal nanocavity. The
two dipoles are located at points A and B on the center plane of the
slab, and the two transition dipole moments are parallel to the x axis.
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FIG. 3. (Color online) Frequency-dependent characteristics for
the transfer rate and the DDI potential energy. (a) The transfer rate

ij (ω) and (b) the DDI potential energy 	ij (ω) versus ω for atom
A located at (0, − 11/15,0)a and atom B located at (0,11/15,0)a in
the photonic crystal nanocavity. 
ij (ω) and 	ij (ω) are in units of αij

(αij ≡ √
αi

√
αj 2πc/a). The frequency ω is in units of 2πc/a. The

two dipole moments are parallel and along the x axis. The insets show
the behavior around the defect frequency [ωc = 0.3133(2πc/a)] of
the cavity. The two transition dipoles are parallel and along the x axis.

is the largest 
ij (ωc) for two dipoles located in vacuum with
the atomic separation R = 0. This large 
ij is attributed to
the enhancement of the photon emission and reabsorbance
rates, which can be roughly characterized by the ratio Q/V.
Aiming at quantum computation and quantum information
processing [59,60], where large 
ij or large �ij is needed,
we can increase the quality factor Q through improving
the nanocavity design. For ω ∼ ωc (inset), 
ij (ω) varies
sharply and is sensitive to the frequency, which implies that
tuning ωc of the cavity or ωi of the dipole can both help
to control 
ij . Figure 3(b) shows similar properties for the
DDI potential energy. The inset shows that a repulsive or
an attractive potential energy can be obtained around the
resonance frequency of the cavity.

The position-dependent properties have also been inves-
tigated. Figures 4(a) and 4(b) show the absolute maximum
values of the transfer rate |
ij | and the DDI potential energy
|�ij | as a function of the atom separation R [atom A located
at (0, − 11a/15,0) and atom B located at (0,R − 11a/15,0)],
where the maxima are calculated for ω around ωc. |
ij | and
|�ij | are also in units of αij . The atomic separation is in units
of the lattice constant a. The maximum values of |
ij | and
|�ij | vary in a similar way except for the amplitude. The
above phenomena can be understood as follows: |
ij | depends
greatly on the electric field of the defect mode. Equation (11)
shows that |
ij | changes in the same way as the electric field
of the cavity mode at the location of atom B. The cavity
mode along the y axis looks the same as Fig. 4(a) and we

FIG. 4. (Color online) Position-dependent properties for the
transfer rate and the DDI potential energy. (a) The absolute maximum
transfer rate |
ij | and (b) the absolute maximum DDI potential energy
|�ij | versus the interatomic separation R for atom A located at
(0, − 11/15,0)a and atom B located at (0,R − 11a/15,0) in the PC
cavity. The maxima are taken for ω around ωc. |
ij | and |�ij | are in
units of αij (αij ≡ √

αi
√

αj 2πc/a). The atomic separation is in units
of the lattice constant a. The two transition dipoles are parallel and
along the x axis.

do not show it here. Further, we clearly see that |
ij | = |
ii |
and |�ij | = |�ii | have been realized for atom A and atom B

located at positions along the x axis with the same electric
field strength.

V. CONCLUSION

In summary, we have proposed a rigorous numerical
method to investigate DDI in a photonic crystal nanocavity.
We need not calculate the eigenmode. The transfer rate of the
DDI is analytically expressed as the difference between the
two classical dipoles’ total radiation power and the sum of the
two individual dipole’s radiation powers [Eq. (21)], which is
the central result of our theory. The radiation power is obtained
from Eq. (15a) by calculating the rate at which a current density
source does work against a surrounding electric field. This
has been achieved by directly solving the Maxwell equations
in real space with a free-space boundary condition through
the well-known FDTD algorithm. Utilizing Eq. (8c), we have
obtained the DDI potential energy. Further, the method can
be applied for dipoles with different transition frequencies in
both the weak- and strong-coupling regimes. It works well
for dipoles located in photonic nanostructures with arbitrary
shape and can be generalized to calculate many-dipole
interactions.

We have applied this theory to investigate the DDI in a
photonic crystal nanocavity. It is found that the transfer rate
and the potential energy of the DDI strongly depend on the
atomic transition frequency, the atomic position, the resonance
frequency, and the quality factor of the cavity. A large transfer
rate at a distance has been achieved under resonant conditions
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and with a high quality factor. Equal values of the transfer
rate and the local coupling strength have been obtained for
two equal dipoles located at proper positions. Attractive or
repulsive properties of the DDI potential energy have been
obtained around the resonance frequency. Our results should
be significant for solid-state quantum information processing
based on the DDI.
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