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Testing the equivalence between the canonical and Minkowski momentum of light
with ultracold atoms
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We design an experimental system to test the equivalence between the canonical and Minkowski momentum of
light, which can provide a judgment on the recent resolution of the century-old Abraham-Minkowski controversy
by S. M. Barnett [Phys. Rev. Lett. 104, 070401 (2010)]. By measuring the recoil momentum of ultracold
rubidium atoms in a rubidium Bose-Einstein condensate after the electromagnetically induced absorption of a
monochromatic laser pulse, the momentum of the pulse in the ultracold atoms can be obtained. If the equivalence
is valid, the measured results will coincide with the theoretical values of the canonical momentum of the pulse.
Otherwise, if the equivalence is invalid, the measured results will coincide with the theoretical values of the
Minkowski momentum, which are significantly different from that of the canonical momentum. Our scheme
is amethod to test the equivalence between the canonical and Minkowski momentum of light. It can also
be improved to distinguish between the Minkowski and Abraham momenta to contribute to the study of the
Abraham-Minkowski controversy in the future.
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I. INTRODUCTION

The study of the momentum of light in optical media, or,
more generally speaking, the study of the energy-momentum
tensor of the refracted light, raised the century-old problem
known as the Abraham-Minkowski controversy [1–5]. In
1908, Minkowski suggested that the momentum of light
in optical media is

∫
(D × B)dV [6], whose single-photon

expectation value is nh̄k0. In 1909, Abraham argued that
this momentum should be

∫
(E × H/c2)dV [7], with the

single-photon expectation value being h̄k0/n. Here, k0 is the
wave vector of light in vacuum, and n is the refractive index of
the optical medium. Over the last century, several experiments
were carried out in order to solve this controversy [8–11],
even though the precision of their measurements was restricted
by the experimental techniques at that time. In this century,
a recent experiment measuring the recoil momentum of a
Bose-Einstein condensate supports Minkowski’s opinion [12],
while another experiment measuring the recoil momentum
of silica filaments favors Abraham’s opinion [13] (with their
result being questioned by several recent works [14–17]).

Recently, Barnett presented a resolution of the Abraham-
Minkowski controversy [18], which is important progress in
solving this long-standing problem. He demonstrated that the
Abraham momentum is the kinetic momentum of light, whose
single-photon expectation value is h̄k0/ng , with ng being
the group refractive index of the medium; the Minkowski
momentum is the canonical momentum of light whose single-
photon expectation value is nph̄k0, with np being the phase
refractive index of the medium. The unique total momentum
P of the light–optical-medium interacting system can be
expressed as two different combinations [18–21],

P = Pk + PAbr = Pc + PMin, (1)

where Pk and Pc are the kinetic and canonical momenta of
the optical medium and PAbr and PMin are the Abraham and
Minkowski momenta of light [18], respectively.

The key point of Barnett’s resolution is the equivalence
between the canonical and Minkowski momenta of light in
optical media. Before his work, Garrison and Chiao quantized
the electromagnetic field in dispersive media [22] and gave the
single-photon expectation values of its canonical, Minkowski,
and Abraham forms:

Pcan = np(ω)h̄k0,

PMin = np
2(ω)

ng(ω)
h̄k0, (2)

PAbr = 1

ng(ω)
h̄k0,

where ω is the angular frequency of light. Barnett suggests
that the Minkowski momentum of light must include all
the polariton branches and each branch i contributes to the
commutation relation with the value np(ωi)/ng(ωi). Then
there is a velocity summation rule [18],

∑

i

np(ωi)

ng(ωi)
=

∑

i

vg(ωi)

vp(ωi)
= 1, (3)

which leads to the summation of the single-photon expectation
values of the Minkowski momentum among all bands being
equivalent to the canonical momentum,

∑

i

np
2(ωi)

ng(ωi)
h̄k0 ≈

∑

i

np(ωi)

ng(ωi)
Pcan = Pcan. (4)

Here ωi is the solution of the dispersion relation ω =
ck0(ω)/np(ω) for polariton branch i [18], vp(ωi) = c/np(ωi)
is its phase velocity, and vg(ωi) = c/ng(ωi) is its group
velocity.

Barnett also argues that the single-photon expectation value
of the Minkowski momentum n2

p(ω)h̄k0/ng(ω) cannot be
detected because the narrow-band approximation is invalid
in optical media. Then all the polariton modes, whether
excited or not, must be included in the summation in Eq. (3).
However, in Refs. [22,23], the Minkowski momentum is
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derived with the narrow-band approximation (without the
summation of all polariton modes), and its single-photon
expectation value in Eq. (2) is different from the one of the
canonical momentum. Therefore, the equivalence between the
Minkowski and canonical momenta needs to be experimentally
tested in order to judge Barnett’s resolution, which is important
for the study of the Abraham-Minkowski controversy.

In this paper, we design an experiment to measure the
single-photon expectation value of the momentum of a
monochromatic laser pulse in dispersive ultracold atoms,
which can test well the equivalence between the canonical
and Minkowski momenta of light. In Sec. II, we present the
principle characteristics and scheme of the experiment and
describe how to measure the recoil momentum curve from
the recoil pattern of ultracold atoms. In Sec. III, both the
canonical and Minkowski recoil momenta of the ultracold
atoms with the electromagnetically induced absorption (EIA)
of the monochromatic pulse are calculated. We show that if the
equivalence between the canonical and Minkowski momenta
of light is valid, the measured recoil momentum curve will
coincide with the curve of the recoil canonical momentum;
if the equivalence is invalid, the measured recoil momentum
curve will follow the curve of the single-photon values of
the Minkowski momentum, which is quite different from
that of the canonical momentum. These differences can be
detected well in our proposed experiment. In Sec. IV, we also
show the possibility of observing the differences between the
Minkowski and Abraham momenta of the laser pulse with the
same setup. Section V is the summary and conclusion.

II. SCHEME OF THE EXPERIMENT

Many recent theoretical [24–26] and experimental [12]
works suggest that the momentum of a photon in an atomic
medium should take the Minkowski value nph̄k0. Thus a
stationary atom in the medium which absorbs the photon
from the pulsed pump light will get a recoil momentum of
nph̄k0. However, according to Garrison and Chiao [22], the
above momentum is actually the canonical momentum of light,
and the single-photon expectation value of the Minkowski
momentum is indeed np

2h̄k0/ng after the quantization of the
Minkowski momentum tensor in dispersive optical media.

Barnett argues that these two momenta are equivalent due
to the summation rule in Eq. (3) and that many experimental
attempts that try to measure the value of np

2h̄k0/ng would
finally obtain the value of nph̄k0. For nondispersive atomic
media, these two momenta are always the same because the
phase refractive index np is equal to the group refractive
index ng in such media, which leads to nph̄k0 = np

2h̄k0/ng .
However, for dispersive atomic media, there is a dispersion
relation,

ng(ω) = np(ω) + ω
dnp(ω)

dω
, (5)

which makes np significantly different from ng when
|ωdnp(ω)

dω
| � np(ω). According to the summation rule in

Eq. (3), no matter how different np and ng are from each
other, the measured photon’s momentum would still take
the canonical form nph̄k0. However, in atomic media, only
one polariton mode is excited by a monochromatic light

FIG. 1. (Color online) Absorption curves (solid black line) and
dispersion curves (dashed red line) of the EIA obtained from the
Kramers-Kronig relation, Im[χ ] and Re[χ ], respectively. Here ω0

is the frequency of the strong pump light, and ω1 is the frequency of
the weak probe light. The EIA happens when ω1 is close to ω0, and
the absorption peak is just at ω1 = ω0. The width of the anomalous
dispersion range is equal to γ (full width at half maximum) of the
absorption profile.

(with a unique dispersion relation). If the summation rule in
Eq. (3) does not hold for unexcited modes (which means that
the narrow-band approximation is valid here), the measured
monochromatic photon’s momentum in atomic media may
take the Minkowski form np

2h̄k0/ng , which would deviate
greatly from the values of the canonical form nph̄k0. There-
fore, in order to test the equivalence between the canonical
and Minkowski momenta, an atomic medium with a unique
dispersion curve for monochromatic light would be very
suitable.

In the experiment of Campbell et al. [12], the dis-
persion curve corresponds to the absorption signal of the
87Rb 5 2S1/2,F = 1 → 5 2P3/2,F

′ = 1 transition, whose nat-
ural width is 6.056 MHz. Thus the peak-to-peak width of the
dispersion curve is also 6.056 MHz. This value is wide, and
the measured points in their experiment are all far away from
the center of the dispersion curve. Thus the values of ω

dnp(ω)
dω

for their measured points would all satisfy

ω
dnp(ω)

dω
� np(ω). (6)

This makes their measurement inadequate to distinguish
between the values of np(ω)h̄k0 and np(ω)2h̄k0/ng(ω) from
the recoil patterns of the ultracold atoms.

In our scheme, we choose the EIA [27] process to let the
ultracold atoms [typically, Bose-Einstein condensate (BEC)]
get recoil momentum from the refracted photons. Figure 1
shows the absorption and dispersion curves of the EIA, where
the EIA signal is a sharp absorption signal (typically <1 MHz)
with a width much narrower than the natural width of the 87Rb
atoms. Since the imaginary part of the electric susceptibility
χ is proportional to the absorption strength and the real
part of χ is proportional to (n2

p − 1) [28], the EIA signal
has a strong anomalous dispersion range (d[np(ω)]/dω < 0)
due to the Kramers-Kronig relation. This can even lead to
d[np(ω)]/dω ≈ −6 × 10−11/Hz [29].

053604-2



TESTING THE EQUIVALENCE BETWEEN THE CANONICAL . . . PHYSICAL REVIEW A 85, 053604 (2012)

z

yx
1

k ,1

k ,0

t

B

2 3

2
1p

g

n P

n

1pn P

FIG. 2. (Color online) Experimental setup measuring the recoil
momentum of ultracold 87Rb atoms by EIA. The strong linearly
polarized pump beam (k0,ω0) propagates along the x direction, and
the circularly polarized weak probe beam (k1,ω1) propagates along
the y direction. At the bottom, the pattern of the atoms’ free diffusion
(delayed by �t after EIA) can be detected by a CCD camera. Region 1
is the pattern of the atoms that do not participate in the EIA. Region 2
is the pattern of the atoms that obtain a recoil momentum equal to
the canonical momentum of the pulse, and region 3 is the pattern of
the atoms that obtain a recoil momentum equal to the Minkowski
momentum of the pulse. P1 = h̄k1 is the free momentum of the probe
light, while np and ng are the phase and group refractive indices of
the atoms, respectively.

Figure 2 shows the scheme of our design. The 87Rb BECs
are originally trapped in a magnetic or a far-detuned optical
trap. The atomic density can reach up to 1015/cm3 whenever
the volume of the 87Rb is compressed by increasing the depth of
the magnetic or optical trap. The pump and probe laser beams
for EIA propagate below the trap region. The distance from the
bottom of the trap to the edge of the beams should be less than
1 mm. The pump laser beams (k0,ω0) are continuous waves
with a narrow width (∼100 kHz). The probe beam (k1,ω1) is
a ∼10-μs pulse. The light intensity of the pump beam shall
be set at around 50 mW/cm2, and the peak intensity of the
probe pulse is weaker than 0.1 mW/cm2. The two beams
are perpendicular to each other to make sure that each beam
contributes to the atomic recoil momentum independently in
the x and y directions. The atoms get recoil momentum in the y

direction only by absorbing refracted photons from the probe
beam, and they recoil in the x direction only by absorbing
refracted photons from the pump beam. The spots of the two
beams should be larger than 0.5 mm2 to ensure that the atoms
stay for a long enough time (>10 ms) for the EIA process. The
detunings of the two beams should be larger than 5� to avoid
the D2 line resonant absorption. With an external magnetic
field applied in the y direction, the pump beam is linearly
polarized, and the probe pulse is circularly polarized in the y

direction. Such a configuration can enhance the EIA process
because the transition types induced by pump and probe lights
are not same [30].

At t = 0, the trap is switched off, and the 87Rb atoms fall
into the intersecting region of the pump and probe beams. The

FIG. 3. (Color online) The comparison between canonical and
Minkowski recoil momenta of cold 87Rb atoms. The solid red line
is the recoil momentum which is equal to the canonical momentum
of the probe light, and the dashed blue line is the recoil momentum
that is equal to the Minkowski momentum of the probe light. The
width of the EIA signal γ is set as 1.0 MHz, and the strength of the
signal is set as half of the 87Rb F = 2 → F ′ = 3 resonant absorption
strength. Here δ = ω1 − ω0 is the detuning between the pump and
probe lights. At the center of the np curve, np = 1, while n2

p/ng

is close to zero. Near the two peaks of the np curve, the n2
p/ng

curve has a clear shape transition between large positive and negative
values.

time sequence should be controlled very precisely to make
the probe pulse encounter the 87Rb atoms at that moment.
After �t = 60 ms, the image of the free diffusion pattern
of the ultracold 87Rb atoms will demonstrate that some 87Rb
atoms acquire a recoil momentum from the probe pulse along
the y axis. According to the previous experiments, such as
electromagnetically induced transparency (EIT) in BECs [31]
and two-photon recoil of BECs [12], an optimized number of
the ultracold atoms in the BEC of our designed experiment
is 5.0 × 106, and an optimized peak density of the BEC is
1.5 × 1015 cm−3, which ensures the visibility and resolution
of the recoil patterns of the BEC by EIA.

III. TESTING THE EQUIVALENCE BETWEEN THE
CANONICAL AND MINKOWSKI MOMENTA

When the patterns of the recoiled ultracold 87Rb atoms are
obtained, the recoil momentum of the atoms can be measured
from them. Then the equivalence between the canonical and
Minkowski momenta of light can be directly tested. If the
recoil momentum is equal to the canonical momentum nph̄k1
of the probe laser pulse, the recoiled atoms will appear in
region 2 in Fig. 2; if the recoil momentum is equal to the
Minkowski momentum np

2h̄k1/ng , the recoiled atoms will
appear in region 3 in Fig. 2.

Figure 3 shows the calculated results of the canonical
and Minkowski momenta of the probe pulse around the EIA
frequency range. These data determine the positions of the
patterns of regions 2 and 3 in Fig. 2. The width of the EIA
signal is set to be 1.0 MHz, and its strength is set as half
of the 87Rb F = 2 → F ′ = 3 absorption strength. These two
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momenta can be calculated from

ng(ω1) = np(ω1) + ω1
dnp(ω1)

dω1
,

Pcan = np(ω1)h̄k1,

PMin = np
2(ω1)

ng(ω1)
h̄k1, (7)

with ω1 being the frequency of the probe pulse and ω0 being
the frequency of the pump beam.

From Fig. 3, we can see that the canonical and Minkowski
momenta of light take significantly different values in the
dispersion range. At the point ω1 = ω0, the phase refractive
index np(ω1) = 1, and the canonical momentum is equal
to h̄k1. The group refractive index here satisfies ng(ω1) �
1 because ω1

dnp(ω1)
dω1

� 1; thus the Minkowski momentum
n2

p(ω1)/ng(ω1) is close to zero at this point. This would result
in no recoiled ultracold atoms being observed in region 2.
Another significant difference between the canonical and
Minkowski momenta appears around the two points where
dnp(ω1)/dω1 = 0. At these two points, the values of the
Minkowski momentum n2

p(ω1)h̄k1/ng(ω1) have sharp shifts
between n2

p(ω1)/ng(ω1) � −1 and n2
p(ω1)/ng(ω1) � 1. This

is because the group index ng(ω1) is very close to zero around
these two points. Then the curve of the Minkowski momentum
has much more significant shifts than that of the canonical
momentum, which might make the distance between region 3
and region 1 much larger than that between region 2 and
region 1 in Fig. 2.

The frequency width of the EIA signal is determined by
the flying time of the atoms in the pump and probe beams
[27,30] and the optical shifts of the energy levels of the atoms
caused by the pump beam [32]. One question is whether the
frequency width of the probe pulse is narrow enough to detect
the sharp shifts of the Minkowski momentum around the two
points dnp(ω1)/dω1 = 0. Our answer is yes. The external-
cavity diode lasers (ECDL) usually have a typical width of
100 kHz after frequency locking and thus can provide enough
frequency resolution to detect the Minkowski momentum in
Fig. 3.

If the measured recoil momentum of the ultracold 87Rb
atom matches the curve of the canonical momentum in Fig. 3
(solid red line), then we can arrive at the conclusion that the
summation rule in Eq. (3) works even if some polariton modes
are not excited. This would provide evidence supporting the
equivalence between the canonical and Minkowski momenta
as well as Barnett’s recent resolution of the Abraham-
Minkowski controversy [18]. On the contrary, if the measured
recoil momentum follows the curve of the Minkowski momen-
tum in Fig. 3 (dashed blue line), the summation rule in Eq. (3)
does not hold for ultracold atoms, and the equivalence between
the canonical and Minkowski momenta of light in dispersive
atomic media would be questionable.

IV. ABRAHAM MOMENTUM

We assume that the measured results in Sec. II coincide with
the Minkowski values (dashed blue line in Fig. 3). Since the
single-photon expectation value of the Abraham momentum
h̄k0/ng is close the one for the Minkowski momentum

n2
ph̄k0/ng , we need to make sure that the measured results

are the values of the Minkowski momentum rather than the
Abraham momentum. From Eq. (2) we can see that the
difference between the single-photon expectation values of

the Minkowski and Abraham momenta is np
2(ω)−1
ng(ω) h̄k0, which is

three orders of magnitude smaller than both the Minkowski and
Abraham momenta of light in ultracold atoms. Therefore, it is
not easy to distinguish them experimentally. Then the problem
that remains is how to distinguish the Abraham momentum
from the Minkowski momentum in our proposed experimental
system.

Our study shows that, within the accuracy required to detect
the curve of the canonical momentum (solid red line in Fig. 3),
it is possible to distinguish the Abraham momentum from
the Minkowski momentum. We take typical values for the
parameters of the EIA signal in Fig. 1 and adopt them in Fig. 3.
The frequency width γ of the EIA signal can be set as 1 MHz,
and the strength is half the 87Rb F = 2 → F ′ = 3 resonant
absorption strength (based on the observed EIA signal in dilute
cold-atom gas [32]). With such parameters, the maximum
value of |np − 1| is of the order of 10−3. In practice, the number
of 87Rb atoms in BEC can be more than 106, and the density
of BEC can reach 1015/cm3; therefore the optical thickness of
the BEC can lead to a much larger maximum value of |np − 1|
(∼10−2). Therefore, it is possible to distinguish between
the Minkowski and Abraham momenta in our proposed
experimental setup with a high-resolution CCD. The two
best points for distinguishing between the two momenta are
at dnp(ω)/dω = 0, where the group refractive index ng(ω)
is equal to the phase index np(ω) according to Eq. (5).
At these two points, the Minkowski momentum becomes
PMin = nph̄k1, which is just equal to the canonical momentum,
while the Abraham momentum becomes PAbr = h̄k1/np. At
the point where dnp(ω)/dω = 0 and np > 1, the Minkowski
momentum PMin > h̄k1 and the Abraham momentum PAbr <

h̄k1; at the other point, where dnp(ω)/dω = 0 and np < 1,
the Minkowski momentum PMin < h̄k1 and the Abraham
momentum PAbr > h̄k1. Such a difference can be detected
from the recoil patterns of the ultracold atoms in Fig. 2 by a
high-resolution CCD.

On the other hand, if the measured results of Sec. II coincide
with the curve of the canonical momentum (solid red line in
Fig. 3), it is not necessary and even not possible to distinguish
between the Minkowski and Abraham momenta. Besides the
summation rule for Minkowski momentum in Eq. (3), Liu and
Zhang recently suggest that a similar sum rule for Abraham
momentum also works [33]. It is

∑

i

1

ng(ωi)np(ωi)
= 1, (8)

where the subscript i indicates the polariton modes. This
sum rule is one of the two Huttner-Barnett velocity sum
rules [34], while the other one is just Eq. (3). Then the
summation of each polariton mode’s Abraham momentum
h̄k0/ng(ωi) is also equal to the canonical momentum np(ω)h̄k0
in [33]. In such a case, the canonical momentum, Minkowski
momentum, and Abraham momentum would be equivalent.
Thus, if the measured results support the canonical momentum,
the results may also be interpreted as evidence for the
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equivalence among the canonical, Minkowski, and Abraham
momenta.

V. SUMMARY

We designed an experiment to detect the Minkowski mo-
mentum of a laser pulse by measuring the recoil momentum of
ultracold atoms after electromagnetically induced absorption
processes. Our results show that the canonical momentum

np(ω1)h̄k1 and the Minkowski momentum np
2(ω1)

ng(ω1) h̄k1 of the
monochromatic laser pulse could induce quite different recoil
patterns of the 87Rb BEC. If the observed recoil patterns are
consistent with the curve of the canonical momentum of the
probe pulse, it would be evidence for the equivalence between
the canonical and Minkowski momenta of light. On the other
hand, if the recoil patterns follow the curve of the Minkowski
momentum of the probe pulse, the equivalence between the
canonical and the Minkowski momenta is violated. In the latter
case, it is also possible to distinguish between the Minkowski
momentum and the Abraham momentum of the laser pulse by
increasing the density of the 87Rb BEC.

Our method can be realized by any 87Rb BEC experimental
system where the time-of-flight pattern of the recoiled ultra-
cold 87Rb atoms can be detected. Since Barnett’s resolution
of the Abraham-Minkowski controversy is important progress
in the study of the Abraham-Minkowski controversy, we hope
that future experiments invoked by our method can give a clear
and convincing test of the equivalence between the canonical
and Minkowski momenta of light. In addition, we hope that
such an experimental system can detect the difference between
the Minkowski and Abraham momenta of light, which is
of definite importance for studying the Abraham-Minkowski
controversy.
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