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Controlling phase separation of a two-component Bose-Einstein condensate by confinement
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We point out that the widely accepted condition g11g22 < g2
12 for phase separation of a two-component

Bose-Einstein condensate is insufficient if kinetic energy is taken into account, which competes against the
intercomponent interaction and favors phase mixing. Here g11, g22, and g12 are the intra- and intercomponent
interaction strengths, respectively. Taking a d-dimensional infinitely deep square well potential of width L as an
example, a simple scaling analysis shows that if d = 1 (d = 3), phase separation will be suppressed as L → 0
(L → ∞) whether the condition g11g22 < g2

12 is satisfied or not. In the intermediate case of d = 2, the width
L is irrelevant but again phase separation can be partially or even completely suppressed even if g11g22 < g2

12.
Moreover, the miscibility-immiscibility transition is turned from a first-order one into a second-order one by the
kinetic energy. All these results carry over to d-dimensional harmonic potentials, where the harmonic oscillator
length ξho plays the role of L. Our finding provides a scenario of controlling the miscibility-immiscibility
transition of a two-component condensate by changing the confinement, instead of the conventional approach of
changing the values of the g’s.
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I. INTRODUCTION

Phase separation is a ubiquitous phenomenon in nature
[1,2]. A most prominent example familiar to everyone is that
oil and water do not mix. Besides that, the phenomenon of
water in coexistence with its vapor can also be understood
as a type of phase separation [3]. In general, two phases
mix or not depending on which configuration minimizes
the energy or free energy of the whole system. With the
realization of Bose-Einstein condensation in ultracold atomic
gases, another example of phase separation is offered by
two-component Bose-Einstein condensates (BECs) [4–8]. In
such a system, phase mixing or separation means the two
condensates overlap or not spatially, which correspond to
different interaction energies. A widely accepted condition
for phase separation, which is based on the consideration of
minimizing the interaction energy [9,10], is given by

g11g22 < g2
12. (1)

Here g11 and g22 are the intracomponent interaction strengths
of components 1 and 2, respectively, while g12 is the interaction
strength between them [11]. This condition is intuitively rea-
sonable since if the intercomponent interaction is too strong,
the two components would like to get separated from each
other. Experimentally, controlled miscibility-immiscibility
transition of a two-component BEC based on the idea of
adjusting the values of the g’s using Feshbach resonance
and so as to get (1) satisfied or not has been demonstrated
recently [12,13].

Now the point is that though the condition above is
very appealing in its simplicity and usefulness, it has great
limitations. In its derivation, the condensates are assumed
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to be uniform and the kinetic energy associated with the
boundary or interface layers is neglected. The problem is
then reduced to minimizing the total interaction energy, or
more specifically, to weighing the intercomponent interaction
against the intracomponent interaction. This approximation is
legitimate if the widths of the boundary or interface layers
are much smaller than the extension of the condensates, or
in other words, if the boundary or interface layers are well
defined. However, this condition is not necessarily satisfied
in all circumstances. Actually, some simple scaling analysis
may tell us when it will fail. Consider a condensate trapped in a
d-dimensional container of size L. The characteristic (average)
density of the condensate is on the order of L−d . According to
the mean-field (Gross-Pitaevskii) theory, the healing length of
the condensate, which determines the widths of the boundary
or interface layers, will be on the order of Ld/2 [9,10]. Thus we
see that in one- and three-dimensional cases it makes sense to
say boundary or interface layers only in the limits of L → ∞
and L → 0, respectively. In the opposite limits, the “boundary
or interface” layers overtake the condensates themselves in
size, which signals that the kinetic energy will dominate
the interaction energy and should no longer be neglected.
The two-dimensional case is more subtle in that the widths
of the boundary or interface layers scale in the same way with
the sizes of the condensates, which at least means that the
kinetic energy should not be neglected a priori.

The analysis above indicates that the kinetic energy is
likely to play a vital role in determining the configuration
of a two-component BEC. Moreover, we note that the kinetic
energy acts against the intercomponent interaction. The latter
is responsible for phase separation, while the former tries
to expand the condensates and thus favors phase mixing.
Therefore, it is expected that phase separation can be sup-
pressed by the kinetic energy in some circumstances even if
the condition (1) is satisfied [14]. Notably, according to the
argument above, the significance of the kinetic energy can
be controlled by changing the size of the container. That is,
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the phase mixing-demixing transition can be controlled by
a geometrical method, instead of the mechanical method of
changing the values of the g’s, which is based on (1) and is
demonstrated in Refs. [12,13].

II. A TWO-COMPONENT BEC IN AN INFINITELY DEEP
SQUARE WELL POTENTIAL

The considerations above have led us to investigate the
scenario of suppressing phase separation in a two-component
BEC by kinetic energy. We will start from the simplest and
most generic case of a two-component BEC in a d-dimensional
infinitely deep square well potential (of width L). The Dirichlet
boundary condition implies that the condensate wave functions
must be nonuniform and the kinetic energy is at least on the
order of L−2. On the contrary, inside the well, the potential
energy is zero. Therefore, we have a pure competition between
the kinetic energy and the intercomponent interaction energy,
if the intracomponent interactions are set zero [note that in
this case, condition (1) is satisfied]. In this simplest model,
in all dimensions (d = 1, 2, 3), we do observe that phase
separation can be completely suppressed by the kinetic energy
in some regime. Of course, different dimensions have different
features. But all these effects and features carry over to the
more realistic case of d-dimensional harmonic potentials.

In the mean-field theory and at zero temperature, the
energy functional of a two-component BEC in a d-dimensional
infinitely deep square well potential � = [−L/2, + L/2]d is
of the form

E[ψ1,ψ2] =
∫

�

d�r
{ ∑

α=1,2

Nαh̄
2

2mα

|∇ψα|2

+ 1

2

∑
α,β=1,2

gαβNαNβ |ψα|2|ψβ |2
⎫⎬⎭ . (2)

Here the two condensate wave functions are normalized
to unity

∫
�

d�r|ψ1,2|2 = 1, and ψ1,2 = 0 on the boundary.
Note that throughout this paper we are only concerned with
the ground state configuration of the system, therefore all
the wave functions can be taken to be real and positive. The
parameters g11, g22, and g12 = g21 are the effective intra- and
intercomponent interaction strengths. Finally, N1,2 and m1,2

are the atom numbers and atom masses of the two species,
respectively. Now we should note that for an arbitrary set of
parameters, in the ground state configuration, almost definitely,
the two wave functions do overlap but do not coincide with
each other (this can be easily understood in terms of the
Gross-Pitaevskii equations for ψ1,2). In this case, it is far from
trivial to distinguish phase separation and phase mixing. A
method proposed in [15] is to consider the centers of mass of
the two condensates:

�rmα =
∫

�

d�r|ψα|2�r, α = 1,2. (3)

This idea is motivated by the observation that in some regime
both the two condensates are symmetric with respect to the
origin, while in other regime both of them are asymmetric with
respect to the origin, and more importantly, they are shifted in
opposite directions [15]. Apparently the former case is with

�rm1 = �rm2 = 0 and it is appropriate to call it phase mixed, while
the latter case is with �rm1 �= 0 �= �rm2 and it is appropriate to
call it phase separated. Therefore, the offset between the two
centers of mass �rm1 − �rm2 can serve as an order parameter for
the miscibility-immiscibility transition of the system.

Though this order parameter works well for a general case,
we will not use it much in this paper. Actually, instead of
studying a general case, we shall focus on the symmetric
energy functional case, that is, the case when m1 = m2 = m,
N1 = N2 = N , and g11 = g22. The reason is that this special
case not only captures all the essential physics, but also has an
extra merit. That is, now it is possible to have ψ1 = ψ2, which
corresponds to a completely mixed configuration. Therefore, in
this special case, an appropriate order parameter is the overlap
between the two condensate wave functions (or more precisely
1 − η if phase separation is concerned):

η =
∫

�

d�rψ1ψ2, (4)

which takes values between 0 and 1. If η � 1, it would be
fair to say the system shows phase separation. Otherwise, if
η is close to 1, or more precisely if 1 − η � 1, it would be
fair to say the system shows phase mixing. In the intermediate
case, the system is partially phase separated and partially phase
mixed.

Now make the transform ψ1,2(�r) = L−d/2φ1,2(�x) with �r =
L�x. Then

∫
�0

d �x|φ1,2|2 = 1 and φ1,2 = 0 on the boundary of
�0, where �0 = [−1/2, + 1/2]d . In terms of the rescaled
wave functions φ1,2, η = ∫

�0
d �xφ1φ2, and the energy func-

tional (2), under the assumption above, can be rewritten as

E[φ1,φ2] = Nh̄2

mL2

∫
�0

d �x
{

1

2
|∇φ1|2 + 1

2
|∇φ2|2

+ 1

2
(β11|φ1|4 + β22|φ2|4 + 2β12|φ1|2|φ2|2)

}
, (5)

with the reduced dimensionless parameters βij defined as

βij = Nmgij

h̄2Ld−2
, i,j = 1,2. (6)

These parameters are measures of the importance of the
interactions. In the curly braces, the coefficients of the kinetic
terms are constant, yet the coefficients of the interaction terms
(the β’s) scale with L as L2−d . This fact has some important
consequences. If d = 1, there are two different limits. In
the limit of L → ∞ (loose confinement), the kinetic terms
are dominated by the interaction terms and thus the ground
state can be determined by simply minimizing the interaction
energy. In this limit, the textbook analysis is valid and we have
phase separation if condition (1) is satisfied or phase mixing
otherwise. In the opposite limit of L → 0 (tight confinement),
the kinetic terms will dominate and the two rescaled wave
functions can be well approximated by the ground state of the
square well potential, that is, φ1,2(x) � √

2 cos(πx). In this
limit, phase separation will be suppressed whatever the values
of the g’s are, even if (1) is fulfilled. The three-dimensional
case is the inverse of the one-dimensional case. In the limit
of L → 0, the kinetic terms are negligible and the criterion of
phase separation (1) is valid. In the other limit of L → ∞, the
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FIG. 1. (Color online) (a) The overlap factor η as a function of the
reduced parameter β12 [see Eq. (6)] in different dimensions (infinitely
deep square well potential case g11 = g22 = 0). Note that for all values
of d there exists a critical value βc

12 �= 0, below which η attains its
maximal possible value 1. (b) A schematic plot of η vs the width of
the square well in different dimensions. Note the counterintuitive fact
that in the three-dimensional case (d = 3) the stronger we squeeze
the system (the smaller L is) the stronger phase separation is (the
smaller η is).

kinetic terms dominate and phase separation is suppressed
regardless of the condition (1). The two-dimensional case
is another story. The parameter L simply drops out in the
curly braces. It is no use to adjust the width of the well to
enhance the importance of the kinetic energy or the interaction
energy relatively. The kinetic and interaction energies should
be treated on an equal footing, which means the analysis
leading to criterion (1) may be invalid.

We have checked all these predictions numerically. Note
that on the problem of phase separation, the intracomponent
interactions are on the same side as the kinetic energy—they
both try to delocalize the condensates. Therefore, to highlight
the effect of kinetic energy, we shall set g11 = g22 = 0 (β11 =
β22 = 0) so that the kinetic energy is the only element acting
against phase separation. As we shall see below, this special
case also admits a simple analytical analysis.

We have solved the ground state of the system in all
dimensions for a given value of β12 [16]. The overlap factor
η is plotted versus β12 in Fig. 1(a). We observe that in
all dimensions there exists a critical value of β12 (denoted
as βc

12), below which the two condensates wave functions
are equal (η = 1). That is, for β12 � βc

12, phase separation
is completely suppressed. Above the critical value, phase
separation develops (η < 1) as β12 increases, but is still greatly
suppressed for a wide range of value of β12. It should be
stressed that though in Fig. 1(a) the curves of η − β12 are
qualitatively similar to each another for all values of d (the
plateau of η = 1 is always located in the direction of β12 → 0),
the curves of η − L will be quite different. The reason is that
β12 ∝ L2−d . Figure 1(b) is a schematic plot of η versus L in all
three cases. It shows that η as a function of L is monotonically
decreasing, constant, and monotonically increasing in one,
two, and three dimensions, respectively. This means that to
suppress phase separation, in one dimension we should tighten
the confinement, in three dimensions we should loosen the
confinement, while in two dimensions it is useless to change
the confinement. Overall, Fig. 1 confirms the initial conjecture
that kinetic energy can suppress phase separation.

In hindsight, we can actually understand why phase separa-
tion can be suppressed in the limits of L → 0 in one dimension
and L → ∞ in three dimensions. Consider two different
configurations. The first one is a phase-separated one—the two
condensates occupy the left and right halves of the container
separately. The second one is a phase-mixed one—the two
condensates both occupy the whole space available and thus
overlap significantly. Compared with the first configuration,
the second one costs more intercomponent interaction energy,
which is on the order of L−d , but saves more kinetic energy,
which is on the order of L−2. The second configuration (phase
mixed) is more economical in energy in the limit of L → 0
and L → ∞, in the cases of d = 1 and d = 3, respectively.
The case of d = 2 is more subtle and which configuration wins
depends on parameters other than L.

A remarkable fact revealed in Fig. 1, but not so obvious in
our arguments, is that in the symmetric case with β11 = β22 =
0, η = 1 for β12 � βc

12, which is on the order of unity. This is
a stronger fact than η → 1 as β12 → 0 as we argued. Actually,
the general observation is that for β11 = β22 > 0, η = 1 for
β12 smaller than its critical value βc

12, which is larger than β11.
This fact has rich meanings. On the one hand, it demonstrates
that the kinetic energy is very effective—phase separation can
be completely suppressed by it even if β12 > β11 = β22, that is,
when (1) is satisfied. On the other hand, it strongly indicates
that as β12 crosses the critical value, the system undergoes
a second-order phase transition which can fit in the Landau
formalism. The picture is that the exchange symmetry φ1 ↔ φ2

of the energy functional (5) is preserved for β12 < βc
12, but is

spontaneously broken as β12 surpasses βc
12.

We have been able to prove the first point rigorously on
the mathematical level (see Appendix A). However, it is also
desirable to develop a physical understanding of the two points.
This can be achieved by studying a two-component BEC in a
double-well potential (see Appendix B) or using a variational
approach [17]. We note that in the limit of β12 → 0, φ1,2

both converge to the (nondegenerate) ground state of a single
particle in the [−1/2, + 1/2]d infinitely deep square well.
As β12 is turned on, the two wave functions are deformed
and excited states mix in. Because the energies of the excited
states grow up quadratically, we cut off at the first excited
level and take the following ansatz for the two condensate
wave functions:

φ1 = c0ϕ0 + c1ϕ1, φ2 = c0ϕ0 − c1ϕ1. (7)

Here ϕ0 is the ground state, while ϕ1 is one of the possibly
degenerate first excited states. The coefficients c0,1 are real and
satisfy the normalization condition c2

0 + c2
1 = 1. Obviously,

complete phase mixing would correspond to c1 = 0, while
partial phase separation to c1 �= 0. Our numerical simulations
indicate that (this is also supported by the variational approach
itself, see Appendix C) in the two-dimensional case, when
phase separation occurs, the two condensates are shifted either
along x or y direction; in the three-dimensional case, when
phase separation occurs, the two condensates are shifted either
along x or y or z direction. This fact motivates us to choose
ϕ1 in the following form:

d = 1 : ϕ1 = w1(x), (8a)

d = 2 : ϕ1 = w0(x)w1(y) or w1(x)w0(y), (8b)
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d = 3 : ϕ1 = w0(x)w0(y)w1(z) or w0(x)w1(y)w0(z)
(8c)

or w1(x)w0(y)w0(z),

where w0(x) = √
2 cos(πx) and w1(x) = √

2 sin(2πx) are the
ground and first excited states of a single particle in the
one-dimensional [−1/2, + 1/2] infinitely deep square well
potential. Substituting Eqs. (7) and (8) into (5) we get the
reduced energy functional Ẽ = E/(Nh̄2/mL2) as

d = 1 : Ẽ(c1) = (3π2 − 5β12)c2
1 + 5β12c

4
1 + const,

d = 2 : Ẽ(c1) =
(

3π2 − 15

2
β12

)
c2

1 + 15

2
β12c

4
1 + const,

d = 3 : Ẽ(c1) =
(

3π2 − 45

4
β12

)
c2

1 + 45

4
β12c

4
1 + const.

These are nothing but the Landau’s expression of the free
energy in a second-order phase transition, with c1 playing the
role of the order parameter here. We immediately determine the
critical values of β12 by putting the coefficients of c2

1 to zero.
Specifically, βc

12 = 3π2

5 , 2π2

5 , and 4π2

15 for d = 1, d = 2, and
d = 3, respectively. These values agree with those extracted
from Fig. 1 very well. The relative errors are within 1%, 9%,
and 19%, respectively. The deviation increases with d because
in higher dimensions, the degeneracy of the excited states
increases and the two-mode approximation in (7) becomes
less accurate. In the expressions of Ẽ, we can actually see
how the kinetic energy suppresses phase separation. The term
3π2c2

1 comes from the kinetic energy difference of the two
modes ϕ1,2. Without this term, the critical value βc

12 would be
zero instead of being finite.

For a general case without the exchange symmetry φ1 ↔
φ2, the appropriate order parameter is no longer η but

�rm1 − �rm2. However, the second order transition picture still
holds. Specifically, �rm1 = 0 = �rm2 for β12 smaller than some
critical value βc

12 which is larger than
√

β11β22. Overall,
this asymmetric case is more involved than the symmetric
case above because there are more parameters. Hopefully, a
systematic study will be presented in a follow-up work.

III. A TWO-COMPONENT BEC
IN A HARMONIC POTENTIAL

So far we have focused on the ideal case of infinitely deep
square wells. Experimentally it is harmonic potentials that are
most readily realized. Therefore, it is necessary to see whether
analogous results hold for harmonic potentials. One concern is
that the extra potential energy may blur the picture. However,
after some similar rescaling, we shall see that all the results
persist.

The energy functional of a two-component BEC in a d-
dimensional isotropic harmonic potential is

E

N
=

∫
Rd

d�r
{

h̄2

2m

∑
α=1,2

|∇ψα|2 + 1

2
mω2

d |�r|2
∑

α=1,2

|ψα|2

+ N

2

(
g11|ψ1|4 + g22|ψ2|4 + 2g12|ψ1|2|ψ2|2

) }
. (9)

Here again we have assumed equal mass and equal number
for the two species. The two condensate wave functions are
normalized to unity, that is,

∫
d�r|ψ1,2|2 = 1. Now make the

transform ψ1,2(�r) = ξ
−d/2
ho φ1,2(�x) with �r = ξho �x, where ξho =√

h̄/mωd is the characteristic length of the harmonic potential.
We have then

∫
d �x|φ1,2|2 = 1. In terms of φ1,2, the energy

functional can be rewritten as

E

Nh̄ωd

=
∫

Rd

d �x
{

1

2

∑
α=1,2

|∇φα|2 + 1

2
|�x|2

∑
α=1,2

|φα|2 + 1

2

(
β11|φ1|4 + β22|φ2|4 + 2β12|φ1|2|φ2|2

) }
. (10)

Here the reduced interaction strengths are defined as

βij = Nmgij ξ
2−d
ho

h̄2 ∝ ω
(d−2)/2
d , i,j = 1,2. (11)

We now have a similar situation as before. The importance
of the interactions can be changed by changing the value of
ξho, which plays the role of L in our previous example. The
interactions will be negligible if d = 1 and ξho → 0 or if d = 3
and ξho → ∞. In this case, the rescaled wave functions φ1,2

will be close to the ground state of the harmonic oscillator,
that is, φ1,2 � π−d/2 exp(−�x2/2), and phase separation is
suppressed regardless of the values of the g’s. The interactions
will become significant if d = 1 and ξho → ∞ or d = 3 and
ξho → 0. In this case, the kinetic energy can be neglected
and we enter the Thomas-Fermi regime. In this regime, the
criterion (1) will be a faithful one for phase separation.

We have verified these predictions numerically. In Fig. 2
we have shown the overlap factor η ≡ ∫

d �xφ1φ2 versus
the reduced intercomponent interaction strength β12 in all

dimensions (with g11 = g22 = g12/1.05). Again we see that
phase separation is completely suppressed for β12 below some
critical value βc

12.
Let us now consider the possibility of experimentally

observing the immiscibility-miscibility transition by adjusting
the confinement, for example, the frequency ωd . In cold
atom experiments the harmonic potential is often of the form
V (�r) = 1

2m[ω2
⊥(x2 + y2) + ω2

zz
2]. To get a three-dimensional

isotropic potential we set ω⊥ = ωz. An effectively one- (two-)
dimensional potential can be obtained in the limit of ω⊥ �
ωz (ω⊥ � ωz). For these three different geometries of the
potential, the interaction strengths (the g’s) relate to the s-wave
scattering lengths (the a’s) as

gij = 4πh̄aij

m
, ωd = ωz = ω⊥, d = 3, (12a)

gij = 2
√

2πh̄3/2ω
1/2
z aij

m1/2
, ωd = ω⊥ � ωz, d =2, (12b)

gij = 2h̄aijω⊥, ωd = ωz � ω⊥, d = 1. (12c)
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FIG. 2. (Color online) (a)–(c) The overlap factor η as a function
of the reduced parameter β12 [see Eq. (11)] in different dimensions
(isotropic harmonic potential case g11 = g22 = g12/1.05). Note that
for all value of d there exists a critical value βc

12 �= 0, below which
η attains its maximal possible value 1. (d) A schematic plot of η vs
the characteristic frequency ωd of the harmonic potential in different
dimensions.

Using Eqs. (11) and (12) we can study the possibility of
tuning β12 across the critical value βc

12. We study each case
individually (the mass m is taken to be that of 23Na):

(1) d = 3. Suppose N = 104, a12 = 40 aB. The critical
value of ωd is 2π × 560 Hz, which can be covered in current
experiments.

(2) d = 2. Suppose N = 104, a12 = 40 aB, and the trans-
verse frequency ω⊥ = 2π × 2.6 Hz. The critical value of the
longitudinal frequency ωz is 2π × 140 Hz, which is realizable
in current experiments [12].

(3) d = 1. Suppose N = 2 × 103, a12 = 40 aB, and the
transverse frequency ω⊥ = 2π × 130 Hz. The critical value
of the longitudinal frequency ωz is 2π × 19 Hz, which is
realizable in current experiments.

Here the number of atoms is one or two orders smaller than
its typical value in experiments. This explains why the criterion
(1) is a reliable one in the experiments in [12,13]. They work
in a regime where the kinetic energy is indeed negligible.
However, with the advance of imaging techniques, hopefully
future experiments can work with a relatively small number of
atoms and observe the miscibility-immiscibility transition by
changing the confinement.

IV. CONCLUSIONS

To conclude, we have demonstrated that kinetic energy can
play a vital role in determining the configuration of a two-
component BEC. It renders the empirical condition of phase
separation g11g22 < g2

12 insufficient and it also modifies the
picture of phase separation. To be specific, phase separation
can be completely suppressed even if this condition is fulfilled.
Moreover, the phase mixing to phase separation transition is
now known to be a second-order, continuous transition instead
of a first-order, discontinuous one as in the usual view. From
the experimental point of view, our results may provide a
new scenario of controlling the transition of phase mixing-
demixing of a two-component BEC. Instead of adjusting the
interaction strengths, one can just change the confinement, the
characteristic size of the container.
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APPENDIX A: RIGOROUS JUSTIFICATION

Here we consider the energy functional as

E[φ1,φ2] =
∫

�0

d �x
{

1

2
|∇φ1|2 + 1

2
|∇φ2|2 + 1

2

(
β11|φ1|4 + β22|φ2|4 + 2β12|φ1|2|φ2|2

) }
, (A1)

where �0 = [− 1
2 , 1

2 ]d (d = 1,2,3), β11 = β22 = β. Let φg be
the unique positive ground state of the energy functional
Es[φ] ≡ E[φ,φ], and μg be the corresponding chemical
potential. The functions φ1,2 are normalized to unity by the
usual L2 norm. Let (φg

1 ,φ
g

2 ) be the positive ground state of
(A1). For β12 � β, E[

√
ρ1,

√
ρ2] (ρ1 ≡ |φ1|2, ρ2 ≡ |φ2|2) is

strictly convex in (ρ1,ρ2) [18,19], and the positive ground
state is unique, that is, φ

g

1 = φ
g

2 = φg , η = 1. We are going to
prove that there exists a critical value βc

12 > β such that when
β12 < βc

12, there holds φ
g

1 = φ
g

2 = φg , that is, η = 1. From
now on we concentrate on the case of β12 � β and assume
that β12 = β + β ′, 0 � β ′ � 1. Simple calculation shows

that

E
[
φ

g

1 ,φ
g

2

] − E[φg,φg]

=
∫

�0

d �x
∑

α=1,2

{
1

2
|∇(φg

α − φg)|2 + (β + β12)|φg|2|φg
α

−φg|2 + β − β12

2

(|φg
α |2 − |φg|2

)2 + ∇(φg
α − φg) · ∇φg

+ 2(β + β12)|φg|2φg(φg
α − φg)

}
+ β12

2

(∣∣φg

1

∣∣2 + |φg

2 |2 − 2|φg|2
)2

.
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Making use of the Euler-Lagrange equation of φg ,

μgφg = − 1
2∇2φg + (β + β12)|φg|2φg, (A2)

denoting eα = φ
g
α − φg (α = 1,2), and noticing

∫
�0

eαφg =
− 1

2‖eα‖2
2, we obtain

E
[
φ

g

1 ,φ
g

2

] − E[φg,φg]

=
∫

�0

d �x
∑

α=1,2

{
1

2
|∇eα|2 + (β + β12)|φg|2|eα|2

− β ′

2

(|φg
α |2 − |φg|2

)2 + 2μgφgeα

}
+β12

2

(∣∣φg

1

∣∣2 + ∣∣φg

2

∣∣2 − 2|φg|2
)2

.

Now, the operator Lg = − 1
2∇2 + (β + β12)|φg|2 admits

eigenvalues as μg < μ1 � μ2 � · · · , and the eigenfunction
φg corresponds to μg , wk ∈ H 1

0 with ‖wk‖2 = 1 corresponds
to μk (k � 1). The reason φg is the ground state comes
from the positivity of φg and the uniqueness of the positive
ground state of Lg . Expand eα as eα = cα

gφg + ∑∞
k=1 cα

k wk ,
then (cα

g )2 + ∑∞
k=1 |cα

k |2 = ‖eα‖2
2, cα

g = ∫
�0

eαφg = − 1
2‖eα‖2

2,
and we can derive that∫

�0

d �x
{

1

2
|∇eα|2 + (β + β12)|φg|2|eα|2 + 2μgφgeα

}
= μg(cα

g )2 +
∞∑

k=1

μk|cα
k |2 − μg‖eα‖2

2

� (μ1 − μg)
[‖eα‖2

2 − (cα
g )2

]
= (μ1 − μg)‖eα‖2

2

(
1 − ‖eα‖2

2

/
4
)
.

Now, first we need a lower bound for μ1 − μg , the so-called
fundamental gap, which has been solved recently by Ben
and Julie [20]. Using Eq. (A2), applying elliptic theory with
convex domain �0, it is easy to verify that φg ∈ H 2(�0)
and hence belongs to C0,γ (�0) (0 < γ < 1

2 ) by Sobolev
embedding. Approximating �0 by convex domain �ε (with
smooth boundary) and applying Schauder estimates, we shall
have φg ∈ C2,γ (�ε) and there exists some c > 0 such that
|φg|2 + c|�x|2 is convex (as Hessian matrix of |φg|2 is bounded
by Schauder estimates). Hence we can apply the results in
Ref. [20] to get (Dε is the diameter of �ε)

με
1 − με

g � 3π2

D2
ε

, (A3)

where με
g and με

1 are the first and second eigenvalues,
respectively, of Lg in H 1

0 (�ε). By min-max principles, letting
ε → 0, we have με

g → μg and με
1 → μ1. Hence we find

μ1 − μg � 3π2

D2
, (A4)

where D is the diameter of �0 [or if we assume �0 is a convex
domain with smooth boundaries, (A4) follows directly]. One
should note that the lower bound here is independent of φg in
the operator Lg .

Secondly, we have ‖eα‖2
2 �

∫
�0

d �x(|φg
α |2 + |φg|2) = 2.

Thirdly, we would like to derive L∞ bounds of φg and φ
g
α .

The Euler-Lagrange equation for φ
g
α reads as

μg
αφg

α = − 1
2∇2φ

g
α + β|φg

α |2φg
α + β12|φg

α′ |2φg
α, (A5)

with α′ �= α. For the nonlinear eigenvalues we have the esti-
mates μ

g
α � 2E[φg

1 ,φ
g

2 ] � 2Es[φg], μg � Es[φg] and Es[φg]
can be bounded by choosing any test function (like the ground
state of −�), which gives Es[φg] � C̃(1 + β) (C̃ depends on
�0).

If β � 1, considering the point x0 ∈ �0 where φg attains
its maximum, then �φg(x0) � 0 and from (A2) we have

μgφg(x0) � (β + β12)|φg(x0)|2φg(x0),

which gives ‖φg‖2
∞ � μg

β+β12
� 2C̃. Similarly, we can obtain

the L∞ bound for φ
g
α using the Euler-Lagrange equation and

‖φg
α‖2

∞ � μ
g
α

β
� 4C̃. Thus ‖φg + φ

g
α‖2

∞ � 12C̃. Combining
the three observations above, we get

E
[
φ

g

1 ,φ
g

2

] − E[φg,φg] �
∑

α=1,2

{
3π2

2D2
− 12β ′C̃

2

}
‖eα‖2

2,

which implies that for 0 � β ′ � min{ π2

4D2 C̃
,1} there must hold

eα = 0, that is, η = 1.
For β ∈ [0,1], the approach above is not good. In this case,

we see that μ
g
α � 4C̃ and μg � 2C̃. Using Sobolev inequality,

in one dimension (d = 1) we can find that

‖φg
α‖2

∞ � ‖∇φg
α‖2‖φg

α‖2 �
√

μ
g
α � 2

√
C̃. (A6)

Similarly, ‖φg‖2
∞ �

√
2C̃. For two and three dimen-

sions (d = 2,3), recalling (A2) and (A5), we can ob-
tain from elliptic theory and Sobolev inequalities that
there exist constants C1,C2 > 0 only depending on �0

such that ‖φg
α‖∞ � C1‖φg

α‖H 2 � C2‖μg
αφ

g
α − β|φg

α |2φg
α −

β12|φg

α′ |2φg
α‖2, and ‖φg‖∞ � C2‖μgφg − (β + β12)|φg|2φg‖2.

In two and three dimensions, using Sobolev inequality, we have
‖φg

α‖6 � C3‖∇φ
g
α‖2 � C3

√
μ

g
α (C3 depends on �0). Cauchy

inequality leads to

‖φg
α‖∞ � C2

(
μg

α + β‖φg
α‖3

6 + β12‖φg
α‖6‖φg

α′ ‖2
6

)
,

and thus ‖φg
α‖2

∞ � C4 (C4 depends on �0). Similarly,
‖φg‖2

∞ � C5 (C5 depends on �0). Eventually we have in all
dimensions (d = 1,2,3) there exists a constant C�0 depending
only on �0 such that ‖φg

α + φg‖2
∞ � C�0 . Similar to the case

with β � 1, we have

E
[
φ

g

1 ,φ
g

2

] − E[φg,φg] �
∑

α=1,2

{
3π2

2D2
− β ′C�0

2

}
‖eα‖2

2,

which leads to the conclusion that when β ′ < min{1, 3π2

D2C�0
},

φ
g
α = φg , that is, η = 1. In summary, for all β � 0, if we

choose βc
12 = β + min{1, 3π2

D2C�0
, π2

4D2 C̃
} > β, then for all 0 �

β12 < βc
12 we shall have η = 1.

APPENDIX B: PHASE SEPARATION AS A SPONTANEOUS
SYMMETRY BREAKING

Consider a two-component BEC in a symmetric double-
well potential. Under the two-mode approximation, the mean-
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field energy functional is

E = −Ja(ψ∗
a1ψa2 + ψ∗

a2ψa1) − Jb(ψ∗
b1ψb2 + ψ∗

b2ψb1)

+ 1
2Ua(|ψa1|4 + |ψa2|4) + 1

2Ub(|ψb1|4 + |ψb2|4)

+V (|ψa1|2|ψb1|2 + |ψa2|2|ψb2|2). (B1)

Here Ja and Jb are the hopping amplitudes of the two types
of atoms, and Ua and Ub are the intracomponent onsite
interaction strengths, while V is the intercomponent one.
The complex numbers ψa1 and ψb1 (ψa2 and ψb2) are the
amplitudes of the two condensate wave functions on the left
(right) trap. They are constrained by the total atom numbers,
that is, |ψa1|2 + |ψa2|2 = Na and |ψb1|2 + |ψb2|2 = Nb. For
the sake of simplicity, in the following we shall assume
Ja = Jb = J � 0, Ua = Ub = U � 0, and Na = Nb = N . As
far as the ground state is concerned, it is legitimate to assume
the ψ’s real and positive. Therefore we can write ψa1 = √

Na1,
ψb1 = √

Nb1 and similarly for other ψ’s.
First assume tunneling is turned off, that is, J = 0. Let

Na1 = 1
2N + δa and Nb1 = 1

2N − δb. The energy (B1) is

E(δa,δb) = U
(
δ2
a + δ2

b

) − 2V δaδb + const. (B2)

It is readily determined that if U > V , the ground state is
of δa = δb = 0. The two condensates are both distributed
evenly between the two wells, which is a completely mixed
configuration. If U < V [the counterpart of (1) in the
present context], the ground state is of (δa,δb) = ±(N/2,N/2),
which corresponds to complete phase separation—the two
condensates occupy the two wells separately. Therefore,
without tunneling, the miscibility-immiscibility transition
is a first-order phase transition with the critical point
being V c = U .

Now turn on the tunneling. For the sake of simplicity,
suppose δa = δb = δ. The energy as a function of the order
parameter δ is

E = −4J

√(
N

2

)2

− δ2 + 2 (U − V )δ2 + const

=
[

4J

N
+ 2(U − V )

]
δ2 + 4J

N3
δ4 + o(δ4) + const. (B3)

Here we have the familiar Landau formalism for second-
order phase transitions. The coefficient of the quartic term
is positive but the sign of the quadratic term changes from
positive to negative as V surpasses the critical value V c =
U + 2J/N . Corresponding, δ = 0 is turned from a minimum
to a maximum point and phase separation develops. Here we
note that the tunneling, the kinetic term in the present context,
has two consequences. First, the first-order transition is turned
into a second-order one. Second, the transition point is up
shifted from U to U + 2J/N . This is reasonable since phase
separation costs kinetic energy. What presented in Figs. 1 and 2

are parallel to these results but in continuum (multimode)
cases.

APPENDIX C: JUSTIFICATION OF THE FORM
OF ϕ1 IN EQ. (8)

In this Appendix we show why among all the (degenerate)
first excited states, the one in Eq. (8) is selected. For d = 2,
the ansatz more general than Eq. (7) is

φ1 = c0ϕ0 + cxϕx + cyϕy, (C1a)

φ2 = c0ϕ0 − cxϕx − cyϕy, (C1b)

with ϕx = w1(x)w0(y), ϕy = w0(x)w1(y), and c0, cx , cy being
some real variables under the constraint c2

0 + c2
x + c2

y = 1.
Substituting Eq. (C1) into Eq. (5) we get the reduced energy
functional Ẽ = E/(Nh̄2/mL2) as a function of cx,y as

Ẽ[cx,cy] = 2π2 + 9

4
β12 +

(
3π2 − 15

2
β12

) (
c2
x + c2

y

)
+15

2
β12

(
c2
x + c2

y

)2 + 3

2
β12c

2
xc

2
y. (C2)

We see that for β � βc
12 = 2

5π2 the minimum is at cx = cy =
0. For β12 > βc

12 the minimum is no longer at the origin.
However, for a fixed value of c2

x + c2
y , Ẽ is minimized when the

last term in Eq. (C2) vanishes or when cx = 0 or cy = 0. That
is why the particular ansatz in Eqs. (7) and (8) is appropriate
and enough. We note that due to the symmetry of the trap,
the reduced energy functional is invariant under the transform
(cx,cy) → (±cx, ± cy) and (cx,cy) → (cy,cx). This symmetry
is broken when phase separation occurs.

Similar analysis applies for d = 3. In this case, the ansatz
more general than Eq. (7) is

φ1 = c0ϕ0 + cxϕx + cyϕy + czϕz, (C3a)

φ2 = c0ϕ0 − cxϕx − cyϕy − czϕz, (C3b)

with ϕx = w1(x)w0(y)w0(z), ϕy = w0(x)w1(y)w0(z), ϕz =
w0(x)w0(y)w1(z), and c0, cx , cy , cz being some real vari-
ables under the constraint c2

0 + c2
x + c2

y + c2
z = 1. Substituting

Eq. (C3) into Eq. (5) we get the reduced energy functional Ẽ

as a function of cx,y,z as

Ẽ = 3π2 + 27

8
β12 +

(
3π2 − 45

4
β12

) (
c2
x + c2

y + c2
z

)
+45

4
β12

(
c2
x + c2

y + c2
z

)2

+9

4
β12

(
c2
xc

2
y + c2

yc
2
z + c2

zc
2
x

)
. (C4)

We see that for β � βc
12 = 4

15π2 the minimum is at cx = cy =
cz = 0. For β12 > βc

12 the minimum is no longer at the origin.
However, for a fixed value of c2

x + c2
y + c2

z , Ẽ is minimized
when the last term in Eq. (C4) vanishes or when two of the
three c are zero. Again we see that the particular ansatz in
Eqs. (7) and (8) is appropriate and enough.
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