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We investigate exact matter-wave soliton pairs of two-component heteronuclear atomic Bose-Einstein
condensates with tunable interactions and harmonic potentials by using a combination of the homogeneous
balance principle and the F -expansion technique. Our results show that exact matter-wave soliton pairs
are asymmetric where their existence requires some restrictive conditions corresponding to experimentally
controllable interactions and harmonic potential parameters. In contrast to homonuclear systems, the potentials
for two components in heteronuclear systems are different, which is due to the mass of two components being
unequal. Considering two explicit situations of the interaction parameters, we further explore the collision
dynamics of the soliton pairs with opposite velocities by synchronously controlling the interaction and potential
parameters. The collision dynamics occur during and after the simultaneous evaporative cooling of two
condensates. The results show that collisions are elastic and that the solitons after the collision can keep their
identities. In addition, we find that the amplitudes of the soliton pairs periodically grow with time during the
cooling process and, for the same initial conditions, the collision time of the soliton pair without gain is delayed
compared with that with gain. We also discuss how to observe these new phenomena in future experiments.
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I. INTRODUCTION

Since the experimental realizations of Bose-Einstein con-
densates (BECs) for rubidium and sodium in 1995 [1], the
study of the properties of these systems has attracted a great
deal of attention. In recent years, more interest has been
focused on the dynamics of the multiple-component mixtures.
Different from the single-component BECs, the mixtures of
two species exhibit many remarkable phenomena such as
phase separation [2–5] and different combinations of the
various soliton pairs [6–11], which are unavailable in the
single-component BECs. With the development of technology,
the dynamics of the BECs can be controlled by adjusting
the harmonic traps confining the BECs and/or by tuning the
nonlinear interactions via the Feshbach resonance technique
[12–16]. In the case of two-component BECs, the interactions
include intra- and interspecies interactions and they can been
tuned independently in experiments [17].

According to the type of atoms making up the BECs,
two-component BECs can be divided into two categories:
one is a homonuclear mixture such as that of two hyperfine
states of 87Rb [18], and the other is a heteronuclear mixture
where the different atomic species [16,19–23], or different
isotopes of the same atomic species [15] are populated. In some
recent works the dynamics of two-component systems has
been investigated by considering time- and/or space-dependent
interactions and a time-dependent harmonic external potential
[24–27]. In addition, two matter-wave bright soliton solutions
of the coupled nonlinear Schrödinger (NLS) equations with
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a spatial-modulating nonlinearity are also given and their
dynamical behavior has been explored [28] using a variational
approach. All these works were limited to homonuclear atomic
systems. For the heteronuclear case, the two components of the
BECs are asymmetric. In this situation, the soliton dynamics
of the BECs with time-dependent coefficients has not been
reported in the literature.

The aim of this paper is to study exact soliton pairs and the
collision dynamics of two-component heteronuclear atomic
BECs. The exact soliton can be obtained by a combination
of the homogeneous balance principle and the F -expansive
technique [29–32]. The result shows that these soliton pairs are
asymmetric and that they exist only under a set of restrictive
conditions in which the interaction, harmonic potential, and
gain (or loss) [33] parameters are dependent on each other;
and the first two types of parameters are synchronously
controllable in experiments. In addition, the harmonic poten-
tials for different components are also different. We consider
two explicit time-dependent-interaction cases: one is where
all interactions vary homogeneously and the other is when
the “intra” interactions are fixed and “inter” interactions
are time-dependent. In these cases, we explore the soliton
collision dynamics with or without gain by synchronous
control over the interactions and the harmonic potentials.
The results show that the condensates grow periodically
with modulations of two types of parameters during the
simultaneous evaporative cooling, and the collision time of
two solitons is delayed without cooling when compared
with that during cooling for the same initial conditions.
Moreover, collisions between solitons are basically elastic.
These phenomena are expected to be observed in future
experiments.
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II. HETERONUCLEAR TWO-COMPONENT SYSTEM AND
ITS EXACT SOLITON-PAIR SOLUTIONS

We consider a two-species interacting atomic BEC trapped
in external potentials during the simultaneous evaporative
cooling process. In the zero-temperature approximation, the
systems can be well described by the following coupled NLS
equations:

ih̄
∂�1

∂t
=

(
−h̄2∇2

2m1
+ U11|�1|2 + U12|�2|2

)
�1

+ (
V

(1)
ext + ih̄�1

)
�1,

ih̄
∂�2

∂t
=

(
−h̄2∇2

2m2
+ U21|�1|2 + U22|�2|2

)
�2

+ (
V

(2)
ext + ih̄�2

)
�2,

where the condensate wave functions are normalized by
the particle numbers Ni = ∫

d3r|�i | (i = 1,2), and Uii =
4πh̄2aii/mi and U12 = U21 = 2πh̄2a12/mR represent in-
traspecies and interspecies interactions strengths, respectively,
with aij (j = 1,2) being the corresponding scattering lengths
and mR = m1m2/(m1 + m2). The external trapped potentials
are assumed to be V

(i)
ext = mi[ω2

ixx
2 + ω2

i⊥(y2 + z2)]/2. Here
we assume that the condensates are trapped in elongated and
regulatable harmonic oscillating external potentials; namely,
ωi,⊥ � ωi,x , which means that their transverse motion is
frozen to the ground state of the transverse harmonic trapping
potentials. �i are gain (or loss) terms which give rise to the
growth of the two condensates and which can be used to
describe the evaporative cooling process.

Hence the system is quasi-one-dimensional. Integrating out
the transverse coordinates, the resulting equations for the axial
wave functions ψi(x,t) in dimensionless form can be written
as

i
∂ψ1

∂t
= −1

2

∂2ψ1

∂x2
+ (g11|ψ1|2 + g12|ψ2|2)ψ1

+ λ2
1

2
x2ψ1 + iγ1ψ1, (1)

i
∂ψ2

∂t
= −κ

2

∂2ψ2

∂x2
+ (g21|ψ1|2 + g22|ψ2|2)ψ2

+ λ2
2

2
x2ψ2 + iγ2ψ2, (2)

where x and t are the spatial and temporal coordinates
measured in units a0 = √

h̄/(m1ω1⊥) and ω−1
1⊥, respectively.

The other parameters in Eqs. (1) and (2) are defined as
g11 = 2a11, g22 = 2a22m1η/m2, g12 = g21 = 2m1a12/[(1 +
η)m], η = ω2⊥/ω1⊥, λi = ωix/ω1⊥, γi = �i/ω1⊥, and κ =
m1/m2. In addition, a11, a22, a12, λi , and γi are controllable
time-dependent parameters in experiments.

In previous works, for the interaction parameters the sym-
metric cases including g11(t) = g22(t) = g12(t) and g11(t) =
g22(t) �= g12(t) and the asymmetric case g11(t) �= g22(t) �=
g12(t) have been studied extensively in homonuclear systems
such as two hyperfine spin states of 87Rb in Ref. [24,26],
where all interactions are thought to be equal due to the small
differences between them. In Ref. [24], the interaction between
solitons was realized by modulating the atomic interactions via

the Feshbach resonance technique and with a fixed external
potential, while in Ref. [26] the dynamics of solitons evolves
by synchronous modulation of the interaction and external
potential. For the heteronuclear systems and considering only
time-independent interactions, various soliton-pair solutions
with unchanged amplitudes and speeds have been obtained.
When these soliton pairs are taken as the initial profiles
of the matter waves, their evolution has also been studied
numerically by Feshbach resonance management [10]. Here
we consider the same heteronuclear systems but with time-
dependent interactions and external potentials. In the following
we directly solve the most general coupled NLS equations
with distributed coefficients used to describe the systems and
obtain exact soliton-pair solutions. As a starting point, we take
the following ansatz as the most general solution of the NLS
equations (1) and (2):

ψ1(x,t) = A1(x,t)eiB1(x,t),
(3)

ψ2(x,t) = A2(x,t)eiB2(x,t),

where Ai(x,t) and Bi(x,t) (i = 1,2) are real functions of x

and t . Substituting Eq. (3) into Eqs. (1) and (2), one can obtain
the following equations for Ai and Bi :

0 = ∂A1
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+ ∂A1

∂x

∂B1

∂x
+ 1

2
A1

∂2B1

∂x2
− γ1(t)A1, (4)

0 = −A1
∂B1

∂t
+ 1

2

∂2A1

∂x2
− 1

2
A1

(
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∂x

)2

− g11(t)A3
1

− g12A
2
2A1 − 1

2
λ2

1(t)x2A1, (5)

0 = ∂A2

∂t
+ κ

∂A2

∂x

∂B2

∂x
+ κ

2
A2

∂2B2

∂x2
− γ2(t)A2, (6)

0 = −A2
∂B2

∂t
+ κ

2

∂2A2

∂x2
− κ

2
A2

(
∂B2

∂x

)2

− g22(t)A3
2

− g12A
2
1A2 − 1

2
λ2

2(t)x2A2. (7)

Based on the homogeneous balance principle [29] and the
F -expansion technique [30], we set Ai(x,t) = fi(t)F (θ ) +
gi(t)/F (θ ) with θ = k(t)x + ω(t). Here k(t) and ω(t) are the
inverse spatial width and velocity of the wave, respectively.
The functions fi(t) and gi(t) are parameters to be determined
below. In the expressions for Ai , F (θ ) denotes a Jacobi elliptic
function, which satisfies the following first-order nonlinear
ordinary differential equation:

(
dF (θ )

dθ

)2

= c0 + c2F (θ )2 + c4F (θ )4, (8)

where c0, c2, and c4 are real constants related to the elliptic
modulus m of the Jacobi elliptic functions (JEFs; see Table I).
In addition, it is assumed that Bi(x,t) = ai(t)x2 + bi(t)x +
ei(t), where ai , bi , and ei are time-dependent chirp functions,
wave numbers, and phase shifts, respectively, which will be de-
termined self-consistently. Then we substitute the expressions
of Ai and Bi into Eqs. (4)–(7) and collect the coefficients
of the polynomial xpF (θ )q , where p and q are nonnegative
integers. One can determine those parameters included in the
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TABLE I. All possible Jacobi elliptic functions (JEFs, fifth
column) satisfy Eq. (8), in which the values of c0, c2 and c4 are
determined uniquely for a given JEF form. Here m denotes the elliptic
modulus of the JEFs. The last two columns represent the limiting
cases of the JEFs. When m → 0, the JEFs reduce to the trigonometric
functions and when m → 1, the JEFs become hyperbolic functional
forms or unity (the last two cases).

c0 c2 c4 F (θ ) m = 0 m = 1

1 1 −(1 + m) m sn sin tanh
2 1 − m 2m − 1 −m cn cos sech
3 m − 1 2 − m −1 dn 1 sech
4 m −(1 + m) 1 ns cosec coth
5 −m 2m − 1 1 − m nc sec cosh
6 −1 2 − m m − 1 nd 1 cosh
7 1 2 − m 1 − m sc tan sinh
8 1 − m 2 − m 1 cs cot csch
9 1 −(1 + m) m cd cos 1
10 m −(1 + m) 1 dc sec 1

expressions of Ai(x,t) and Bi(x,t) by taking the coefficients
of F (θ ) as zero:

k(t) = D1e
−2

∫
a(t)dt ,

ω(t) = −D2D1

∫
e−4

∫
a(t)dtdt + D4,

b1(t) = D2e
−2

∫
a(t)dt , b2(t) = b1(t)

κ
,

(9)
fi(t) = D3ie

∫
[γi (t)−a(t)]dt ,

gi(t) = D5ie
∫

[γi (t)−a(t)]dt ,

ei(t) =
∫

hi(t)e
−2

∫
a(t)dtdt,

where a(t) = a1(t) = κa2(t) are the chirp functions. D1 and
D3i (i = 1,2) are real constants and represent the initial
inverse spatial width and the initial amplitudes of the waves,
respectively. D2 and D4 are arbitrary real constants. The value
of D5i will be discussed for the case of soliton solutions (see
below). In addition, the expressions of hi(t) in the phase shifts
are given by

h1(t) = D11g12(t)e2
∫

γ2(t)dt − 3D51D31g11(t)e2
∫

γ1(t)dt

+ 1

2

(
c2D

2
1 − D2

2

)
e−2

∫
a(t)dt ,

(10)
h2(t) = D22g12(t)e2

∫
γ1(t)dt − 3D32D52g22(t)e2

∫
γ2(t)dt

+ κ

2

(
c2D

2
1 − D2

2

κ2

)
e−2

∫
a(t)dt .

Here one defines D11 = −D32(2D52D31 + D32D51)/D31 and
D22 = −D31(2D32D51 + D52D31)/D32.

Furthermore, it is worth noting that the chirp function
satisfies the following standard Ricatti-type equation:

da(t)

dt
+ 2a2(t) + λ2(t)

2
= 0, (11)

with λ(t) = λ1(t) = κλ2(t). It can thus be seen that the external
potentials for the two components are significantly different
in heteronuclear systems, which is caused by the mass of two

components being different. In homonuclear systems, due to
the mass ratio of the two components being unity (i.e., κ = 1),
then the potentials for the two components are identical.

At the same time, the existence of exact solutions requires
a set of constraint conditions:

D2
3ie

2
∫

[γi (t)−a(t)]dt = c4
ik(t)2, (12)

D2
5ie

2
∫

[γi (t)−a(t)]dt = ε2c0
ik(t)2, (13)

where ε = 0, ±1 and


1 = g22(t) − κg12(t)

g22(t)g11(t) − g12(t)g21(t)
, (14)


2 = κg11(t) − g12(t)

g22(t)g11(t) − g12(t)g21(t)
. (15)

The similar conditions are usually called integrable conditions
[31], which are quite complicated in the general case. From
Table I, Eqs. (1) and (2) have various solutions. When 0 <

m < 1, the JEFs are periodic traveling wave solutions. When
m → 0, the periodic traveling wave solutions evolve into the
periodic trigonometric functions. When m → 1, the periodic
traveling wave solutions become the time-dependent soliton
solutions of the coupled NLS equations.

In the following, we mainly focus on the soliton solutions by
taking the elliptic modulus m as 1. According to the conditions
of Eqs. (12) and (13), c0, c4, and 
i take the same sign. After
some careful analysis, we find that only the first three lines
in Table I are able to give out soliton-pair solutions. In the
first line of Table I, because c0 �= 0 and F (θ ) has the tanh
form, one takes ε = 0 to avoid a possible divergence caused
by 1/F (θ ) in the second term of Ai(x,t). As a consequence,
D5i are zero, thus gi are zero, and a dark-dark soliton-pair
solution can be obtained. In the second and third lines, because
c0 is zero, the values of D5i are bound to zero according
to the condition of Eq. (13) and a bright-bright soliton-pair
solution is obtained. Thus, for these two classes of soliton-
pair solutions, only Eq. (12) survives, which is the so-called
integrable condition in the present paper. Finally, two types of
soliton-pair solutions can be written as

ψ1(x,t) = f1(t)F (θ )ei[a(t)x2+b1(t)x+e1(t)],
(16)

ψ2(x,t) = f2(t)F (θ )ei[a(t)x2+b2(t)x+e2(t)].

For these two types of soliton-pair solutions, Eq. (12) proposes
explicit constraint conditions on the interaction parameters gij

and κ , as shown in Table II. Note that, for the heteronuclear
system, the phase shifts for the two components are different,
which is in contrast to the case of homonuclear systems.
We thus obtain the symbiotic solitons in heteronuclear two-
component systems with the time-dependent interactions and
external potentials. Considering the possible preparation in
experiments, we can first load the two condensates into the
harmonic cigar trap (during the simultaneous evaporative
cooling of a mixture of two gases, with this case corresponding
to γ �= 0). Then we use techniques like phase imprinting to
prepare the initial soliton pair and change the trap frequencies,
together with the scattering lengths changed by the Feshbach
resonance, according to Eq. (11) and the integrable conditions
of Eq. (12). The bright-bright or dark-dark soliton with time-
varying amplitudes and speeds may appear in the systems.
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TABLE II. Explicit constraint conditions on the “intra” and “inter” interactions and the parameter κ for the bright-bright and dark-dark
soliton-pair solutions and their phase shifts.

Soliton pairs Existence Phase shifts

Bright-bright g22 < κg12,κg11 < g12,g22g11 > g2
12

or g22 > κg12,κg11 > g12,g22g11 < g2
12 e1(t) = 1

2

(
D2

1 − D2
2

) ∫
e

∫ −4a(t)dt dt

e2(t) = (κ/2)
(
D2

1 − D2
2/κ

2
) ∫

e
∫ −4a(t)dt dt

Dark-dark g22 < κg12,κg11 < g12,g22g11 < g2
12

or g22 > κg12,κg11 > g12,g22g11 > g2
12 e1(t) = − (

D2
1 + D2

2/2
) ∫

e
∫ −4a(t)dt dt

e2(t) = −κ
(
D2

1 + D2
2/2κ2

) ∫
e

∫ −4a(t)dt dt

Hence their dynamical behavior can be controlled by tuning
experimentally the interaction and harmonic external potential
parameters under the constraint conditions, which is explicitly
discussed later.

III. DISCUSSION OF INTEGRABLE CONDITION

The integrable condition Eq. (12) provides many possibil-
ities to tune the interaction and external potential parameters.
According to the condition, a relationship between two
components can be written as


1


2
= D2

31

D2
32

e2
∫

[γ1(t)−γ2(t)]dt , (17)

from which one can conclude that 
1 and 
2 have the same
sign. In the following we explicitly discuss two classes of
interaction parameter cases.

First, we consider that all interaction parameters are tuned
homogeneously; namely, g11(t) = δ11g0(t), g22(t) = δ22g0(t),
and g12(t) = δ12g0(t), where δ11, δ22, and δ12 are time-
independent interaction parameters dependent on the explicit
systems and g0(t) is a modulated interaction parameter. In this
case, Eqs. (14) and (15) can be simplified to


1 = 1

g0(t)

δ22 − κδ12

δ22δ11 − δ2
12

,

(18)


2 = 1

g0(t)

κδ11 − δ12

δ22δ11 − δ2
12

.

In addition, the initial amplitudes of soliton pairs can be
identified as D2

31 = c4
1g0(t)D2
1 and D2

32 = c4
2g0(t)D2
1.

After these parameters are given, Eqs. (11) and (12) can be
recombined into

−g0,t t

g0
+ 2

g0,t

g0
− 2γt + 4γ 2g2

0 + 4
γg0,t

g0
+ λ2 = 0. (19)

The subscript “t” denotes differentiation with respect to time.
This is a condition under which the soliton-pair solutions can
exist when the interaction and external potential parameters
are time dependent.

As the second case, we let g11(t) = δ11 and g22(t) = δ22 be
real constants and g12(t) = g21(t) = g(t) are time-dependent.
These correspond to the inhomogeneous case. Then one has


1 = κ

κδ11 + g(t)
,

(20)


2 = 1

κδ11 + g(t)
,

and δ22 = κ2δ11. Moreover, we take the constant amplitudes
of soliton pairs D2

31 = c4κD2
1 and D2

32 = c4D
2
1. As a result,

Eqs. (11) and (12) can be merged into

λ2(t) = 2γt − g2
t

[κδ11 + g(t)]2
+ gtt

κδ11 + g(t)

−
[

2γ + gt

κδ11 + g(t)

]2

. (21)

Likewise, this is a condition under which the soliton-pair
solutions exist. In the above cases, γ1 = γ2 = γ can be
obtained from Eq. (17). In the following section we discuss
explicit collision dynamics of the soliton pairs under these
conditions.

IV. COLLISION DYNAMICS OF SOLITON PAIRS

Interactions between two solitons can exhibit a very intrigu-
ing collision dynamics behavior, like particles which preserve
their identify after passing through each other. For same-atom
systems the collision is, in essence, partially coherent due to
a direct overlapping of the atoms but, for different atoms, due
to the incoherent nature, the collision is incoherent, which is
the case we study here. In this situation, the total intensity of
two solitons is I = |ψ1|2 + |ψ2|2. Explicitly, we investigate
the elastic collisions of soliton pairs with opposite velocities
by synchronizing control over the interactions and external
potentials mentioned above. For comparison, we consider two
experimentally accessible systems to study the influence on
the soliton-pair collision dynamics of related parameters that
are tuned experimentally.

A. Case of homogeneously tuned interactions

As the first case, we consider that all interaction param-
eters are modulated periodically by the Feshbach resonance
technique according to

g0(t) = 1 + A sin(�t), (22)

where A and � are the amplitude and frequency of the
modulation and here we take A = 0.7 and � = 0.25. Using
this modulation we investigate the collision dynamics of
two types of soliton pairs for the special system of an
87Rb-41K mixture with the dimensionless parameters δ11 = 69
and δ22 = 99 during simultaneous evaporative cooling. Here
and hereafter, all parameters are dimensionless. According
to Table I and the definition of the initial amplitudes, the
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FIG. 1. (Color online) Elastic collision dynamics of bright-bright
and dark-dark soliton pairs with opposite velocities, and synchronous
evolution of external potential with modulation of homogeneous
interaction via Feshbach resonance in 87Rb-41K mixture with growth
of condensates. The parameters used are given by A = 0.7, � = 1/4,
γ = 1/150, and D4 = 4. (a) Collision dynamics of bright-bright
soliton pair with D1 = 1/150, D2 = 1/20, c2 = 1, and c4 = −1.

(b) Corresponding density plot for Fig. 1(a). (c) Collision dynamics
of dark-dark soliton pair with D1 = 1/200, D2 = 1/15, c2 = −2, and
c4 = 1. (d) Corresponding density plot of Fig. 1(c). (e) Synchronous
controls of the external harmonic potential (upper panel) with the
homogenous interaction (lower panel).

existence of a bright-bright soliton pair requires 
1 < 0 and

2 < 0. Hence we take δ12 = −84. The chosen parameters
are related to those used in previous work [8], where g0(t) = 1
was assumed and the bright-bright soliton pair with constant
velocities, amplitudes, and widths formed as a consequence
of modulation instability (MI). In our work, the collision
dynamics of the bright-bright soliton pair is shown in Fig. 1(a).
It is found that the solitons pass through each other after
merging at about t = 30, as also shown in Fig. 1(b) for
a corresponding density plot. In this process, the solitons
oscillate and deform due to the synchronous modulation of
the homogeneous interaction parameters and the external
potentials, which are shown in Fig. 1(e).

Next we study the dark-dark soliton and consider the same
physical system and parameters δ11, δ22 as for the bright-bright-
soliton pair. In this situation, 
1 > 0 and 
2 > 0 are necessary
for the existence of the dark-dark soliton pair. So we set δ12 =
200 to meet the requirements. Shown in Figs. 1(c) and 1(d) is
the collision scene between the dark-dark soliton pair, which
is obviously elastic.

FIG. 2. (Color online) Collision dynamics between soliton pairs
and evolution of external potential after evaporative cooling. The
parameters used are D4 = 4, and γ = 0 for the collision dynamics of
the bright-bright soliton pair [(a) and (b)] and the dark-dark soliton
pair [(c) and (d)]. (e) Synchronous control of the external potential
(upper panel) with homogenous interaction (lower panel). The other
parameters used are the same as for Fig. 1.

In the above case, the MI also occurs for the existence of
the two types of solitons. From Fig. 1, it is easy to see that each
soliton pair is sharply asymmetric due to the mass ratio of two
components and because δ11 �= δ22 �= δ12, and their amplitudes
grow periodically with time along their propagation directions.
In addition, the growth of the two condensates in each period
makes the depth of the potential well shallow in order to keep
the basic excitation of the two condensates unchanged, which
leads to two asymmetric dips of the strength of the external
potential around t = 15 and t = 25. From the upper panel of
Fig. 1(e), the potential well [λ(t) > 0] and barrier [λ(t) < 0]
alternate with the periodic modulation of the homogeneous
interaction parameter. Furthermore, Eq. (19) shows that the
strength only depends on the time-dependent interaction and
the gain term, but has nothing to do with the constant
interaction parameters in the two-component BECs and their
mass ratio. Thus the evolution behavior of the strengths for
different soliton pairs is identical under the modulation of the
same homogeneous interaction and gain term.

Finally, we study the collision dynamics of such soli-
ton pairs without evaporative cooling (in this case, γ = 0)
by controlling the homogeneous interaction parameter as
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FIG. 3. (Color online) Collision dynamics between soliton pairs
under interspecies interactions via Feshbach resonance management
and synchronous evolution of time-dependent external potentials in
87Rb-41K mixture with growth of condensates. The parameters used
are γ = 1/200, � = 1/4, A = 3, D1 = 1/6000, and D2 = 1/400.
(a) Collision dynamics of bright-bright soliton pair with D4 = 1 and
ξ = −215. (b) Corresponding density plot for Fig. 3(a). (c) Collision
dynamics of dark-dark soliton pair with D4 = 8 and ξ = −197.
(d) Corresponding density plot for Fig. 3(c). (e) Synchronous controls
of external harmonic potential and interaction for bright-bright soliton
(left panel) and dark-dark soliton pairs (right panel).

mentioned above and as shown in Fig. 2. Comparison of the
condensates during the simultaneous evaporation shows that
the peak density of each soliton in adjacent periods is the
same in the absence of condensate growth, and the strength of
the harmonic external potential is perfectly symmetric at each
period, as shown at the top of Fig. 2(e). Moreover, it is found
that the collision times of soliton pairs without a gain term are
delayed in the same initial conditions.

B. Inhomogeneous case

Next we consider the case with fixed intraspecies inter-
actions, but with a time-dependent interspecies interaction
modulated as

g(t) = ξ + A sin(�t). (23)

Here we take the modulation amplitude A = 3 and � to
be the same as above. According to these values and the

FIG. 4. (Color online) Collision dynamics between soliton pairs
and synchronous change with time of external potentials in absence
of gain term. The parameters are as follows: Panels (a) and (b) show
the collision dynamics of the bright-bright pair with D4 = 1 and
ξ = −215. Panels (c) and (d) show the collision dynamics of the
dark-dark pair with D4 = 8 and ξ = −197. (e) Synchronous controls
of the external harmonic potential and the interaction for the bright-
bright soliton (left panel) and the dark-dark soliton pairs (right panel).
The other parameters used are the same as for Fig. 3.

existence conditions [i.e., κδ11 < −g(t) for the bright-bright
solitons pair and κδ11 > −g(t) for dark-dark soliton pair],
ξ is different for the former and for the latter in explicit
systems. The modulation type is easy to realize under the
present experimental condition for the heteronuclear system
of an 87Rb-41K mixture [16].

In this system, when δ11 = 99 for a 87Rb atom, it requires
δ22 = κ2δ11 ∼ 446 for 41K. ξ is taken to be −215 for
the bright-bright soliton pair and −197 for the dark-dark
soliton pair. Under synchronous modulation of the interspecies
interactions and external potentials, the collision dynamics
of the bright-bright and dark-dark soliton pairs are shown in
Figs. 3(a)–3(d) with the gain terms and in Figs. 4(a)–4(d) with
no gain terms. Figures 3(e) and 4(e) show the synchronous
behavior of the time-dependent external potentials for the
bright-bright soliton-pair dynamics (left) and the dark-dark
soliton-pair dynamics (right). With the same initial conditions,
the collision times are also delayed in Figs. 4(a)–4(d) compared
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FIG. 5. (Color online) Collision dynamics between soliton pairs
under interspecies interactions via Feshbach management and syn-
chronous evolution of time-dependent external potentials in iso-
topic mixture with growth of condensates. The parameters used
are γ = 1/200, � = 1/4, A = 3, D1 = 1/8000, and D2 = 1/800.
(a) Collision dynamics of bright-bright soliton pair with D4 = 2 and
ξ = −106. (b) Corresponding density plot for Fig. 5(a). (c) Collision
dynamics of dark-dark soliton pair with D4 = 4 and ξ = −95.
(d) Corresponding density plot for Fig. 5(c). (e) Synchronous control
of external harmonic potential and interaction for bright-bright soliton
pair (left panel) and dark-dark soliton pair (right panel).

with that in Figs. 3(a)–3(d). After the collisions, the soliton
pairs in Figs. 3 and 4 show strong oscillations along their
propagation directions, which are similar to those in Figs. 1
and 2. In contrast to Figs. 1 and 2, the amplitudes of the
two solitons in each soliton pair are more sharply asymmetric
in Figs. 3 and 4 due to different modulation schemes. As
mentioned above, the soliton-pair dynamics discussed above
could be realized in the present experiments. Two key steps
are necessary. First, at the initial time the soliton pair should
be created experimentally by possible techniques like phase
imprinting, then one synchronously modulates the interspecies
interaction and the strength of the harmonic external potential,
as shown in our figures.

It is also interesting to study an isotopic system consisting
of 85Rb and 87Rb with δ11 = 103.7 and δ22 = 99, which
is related to those in Ref. [15]. This system has been
used to investigate the phase separation in experiment and
to numerically simulate the growth of dual-species BECs

FIG. 6. (Color online) Collision dynamics between soliton pairs
and synchronous change with time of external potentials in absence of
the gain term. The parameters are as follows: Panels (a) and (b) show
collision dynamics of bright-bright pair with D4 = 2 and ξ = −106.
Panels (c) and (d) show collision dynamics of dark-dark pair with
D4 = 4 and ξ = −95. (e) Synchronous controls of external harmonic
potential and interaction for bright-bright soliton (left panel) and
dark-dark soliton pairs (right panel). The other parameters used are
the same as for Fig. 5.

during simultaneous evaporative cooling [33], in which the
results show that the growth of dual-species BECs during
simultaneous evaporative cooling makes the condensates far
from the true ground state of the system under the case of
unchanged interaction and trap parameters.

In this system, ξ is taken as −106 for the bright-bright
soliton pair and −95 for the dark-dark soliton pair. We explore
the collision dynamics of two types of soliton pairs during
the growth of two condensates are displayed in Figs. 5(a)–
5(d), from which their amplitudes also increase periodically
with the modulation of the interspecies interactions and
harmonic external potentials, which to some extent explains
the experimental phenomena in Ref. [33]. After evaporative
cooling (γ = 0), the condensates are no longer growing.
The collisional dynamics of soliton pairs are sequentially
studied by modulating the interspecies interactions as shown
in Figs. 6(a)–6(d), from which the collision times of the
soliton pairs without gain are also delayed compared with
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FIG. 7. (Color online) Collision dynamics between soliton pairs
and synchronous change with time of external potentials in homonu-
clear system with gain term. The parameters are as follows: γ =
1/200, D1 = 1/100, D2 = 1/10, A = 3, and � = 1/4. (a) Collision
dynamics of bright-bright soliton pair with D4 = 4 and ξ = 106.
(b) Corresponding density plot for Fig. 7(a). (c) Collision dynamics of
dark-dark soliton pair with D4 = 1 and ξ = −95. (d) Corresponding
density plot for Fig. 7(c). (e) Strengths of external potentials in upper
panel and interspecies interactions in lower panel corresponding to
bright-bright and dark-dark soliton ones.

those during evaporation cooling. In addition, it can be seen
that the difference between the amplitudes of the two solitons
in each pair only depends on the mass ratio of the two species.
Because the mass ratio of 85Rb and 87Rb is much smaller
compared with that of the heteronuclear system 87Rb-41K, the
asymmetry between the two components is not as clear as for
the two types of soliton pairs shown in Figs. 5(a), 5(d), 6(a)
and 6(d) compared with those in Figs. 3(a), 3(d), 4(a) and
4(d). In Figs. 5(e) and 6(e), the left upper and lower panels
of these plots show the synchronous controls of the external
potential and the interspecies interaction parameters for the
bright-bright soliton dynamics shown in Figs. 5(a), 5(b), 6(a)
and 6(b), respectively. The controls given in the right-hand
side correspond to the cases of the dark-dark soliton shown in
Figs. 5(c), 5(d), 6(c) and 6(d).

From the condition Eq. (21), one can see that the strength
of the external potential is related to the mass ratio, the
interspecies interaction, and the gain term. Hence the different

FIG. 8. (Color online) Collision dynamics between soliton pairs
and evolution of relevant external potentials after stopping growth
of homonuclear condensates. The parameter γ = 0 for the collision
dynamics of bright-bright soltion pair [(a) and (b)] and dark-dark
soliton pair in [(c) and (d)]. The other parameters are the same as those
for Fig. 7. (e) Potentials and interspecies interactions for bright-bright
and dark-dark soliton pairs, respectively.

modulations of the interactions for the bright-bright and
dark-dark soliton pair directly result in the distinct evolutions
of the external potential, as shown in Figs. 3(e), 4(e), 5(e),
and 6(e). Moreover, in comparison with Figs. 3(e) and 5(e),
in Figs. 4(e) and 6(e), respectively, the external potentials are
symmetric over a period of time.

In order to compare the above isotopic system with 85Rb
and 87 Rb, we consider a homonuclear system with the mixture
of two different hyperfine states of 87Rb and set δ22 = 99.
Because κ = 1, then δ11 = 99. These quantities are basically
close to the experimental observations. In addition, ξ is the
same as that in 85Rb and 87 Rb. In the homonuclear system,
the dynamical evolution of two types of soliton pairs is shown
in Figs. 7(a)–7(d) for the case of γ = 1/200 and in Figs. 8(a)–
8(d) for γ = 0. It is obvious that each soliton pair is perfectly
symmetric in panels (a)–(d) of Figs. 7 and 8. Their modulated
interactions in the lower panels of Figs. 7(e) and 8(e) are
the same as those in the lower panels of Figs. 5(e) and 6(e).
However, the changes of the external potential in the upper
panels of Figs. 7(e) and 8(e) are very different from those in
the upper panels of Figs. 5(e) and 6(e) due to the equal masses
for the two components.
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V. CONCLUSION

In conclusion, we have obtained two types of solitons
pairs in heteronuclear two-component BECs by the homo-
geneous balance principle and the F -expansion technique.
We also carefully analyzed their collision dynamics under
some constraint conditions with distributed parameters. The
conditions can be realized in experiments by synchronous
control over the interaction and the external harmonic potential
parameters. In the heteronuclear systems, the obtained exact
soliton-pair solutions are asymmetric, and the potentials for
the two components are different, which is in sharp contrast to
the homonuclear BECs. The collision dynamics of the soliton

pairs and the remarkable features of collision with or without
gain in heteronuclear BECs should be observed within our
present experimental capacity.
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[4] R. Navarro, R. Carretero-González, and P. G. Kevrekidis, Phys.

Rev. A 80, 023613 (2009).
[5] S. Tojo, Y. Taguchi, Y. Masuyama, T. Hayashi, H. Saito, and

T. Hirano, Phys. Rev. A 82, 033609 (2010).
[6] Th. Busch and J. R. Anglin, Phys. Rev. Lett. 87, 010401 (2001).
[7] P. G. Kevrekidis, H. E. Nistazakis, D. J. Frantzeskakis, B. A.

Malomed, and R. Carretero-González, Eur. Phys. J. D 28, 181
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Phys. Rev. A 78, 023821 (2008); M. Belić, N. Petrović, W. P.
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