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Nonlinear optical behavior of a four-level quantum well with coupled relaxation of optical
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We study analytically the characteristics of optical absorption and slow-light solitons in an asymmetrical four-
level N configuration semiconductor quantum wells with the cross-coupling relaxation of longitudinal-optical
phonons (CCRLOP). It is shown that, in the linear range, the electromagnetically induced transparency (EIT)
depends on the coherence control of both the optical fields and the CCRLOP. A double EIT is obtained under
a relatively strong optical field which is from the hole and antibonding states in the wide well. Especially, the
double EIT becomes perfect under the condition of increasing the CCRLOP. In the nonlinear range, the CCRLOP
has an important effect on both the amplitude and the group velocity of the solitons. The amplitude of solitons
reveals parabolic changes which obtain a maximum value with the increase of CCRLOP. The group velocity of
the solitons continuously slows down if there are fixed three-photon detunings. These results may have potential
applications for all-optical switching and some optical information engineering in solid systems.
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I. INTRODUCTION

Semiconductor quantum wells (QWs), whose discrete
energy levels and optical properties are very similar to those
of atomic vapors [1–4], have recently attracted considerable
attention in the field of nonlinear optics. Such a system
also has inherent advantages such as large electric dipole
moments, high nonlinear optical coefficients, wide adjustable
parameters, and flexibility. Over the past few years, there have
been a large number of efforts on quantum coherence and
interference effects in such QWs and coupled QW sys-
tems [5–14]. Studies on semiconductor QWs can also ef-
fectively facilitate the understanding of both the nature of
quantum coherences in semiconductors and the probable
implementation of optical devices based on the coherence
phenomena.

Especially, electromagnetically induced transparency (EIT)
has been investigated theoretically and experimentally [15–21]
and gives rise to important applications in numerous processes
of atomic, molecular, and solid-state systems. EIT may lead to
great enhancement in nonlinear effects and steep dispersion,
as well as to the reduction of group velocity and the storage
of optical pulses [21,22], even under weak driving conditions.
Further developments have resulted in the demonstration of
highly efficient four-wave mixing [23–25], quantum phase
gates [26–29], and temporal optical solitons with ultraslow
propagating velocity [12,30,31]. Although the EIT effect
could be created by a monochromatic field, sophisticated
schemes were required to generate slow photons of different
frequencies. Similarly, a bichromatic laser field may be used
to acquire double EIT in atomic vapors [32–34]. For the
research domains of semiconductor QWs, it is more important
to focus on different processes in those media with the action
of coherent optical fields, and the additional coupling optical
field also plays a crucial role in optical switch devices [35].
Particularly, there is growing interest in achieving observably
linear and nonlinear properties in the N configuration sys-
tem, for instance, the enhancement of the Kerr nonlinearity
[36], cross-phase modulation [32,37,38], dispersion switching

[39,40], the possibility of superluminal propagation through
coherent manipulation of a Raman process [41], and so on.

In fact, experiments report scattering rates between the
electron and longitudinal-optical phonons in QWs varying
from the subpicosecond range to the order of a picosecond
[42,43]. To our knowledge, the cross-coupling term, which
gives rise to the interference between the bonding and the
antibonding states, has an important effect on the cross-
phase-modulation [29] and quantum interference [35] in QW
systems. Therefore, here we study how the cross-coupling
relaxation of longitudinal-optical phonons (CCRLOP) affect
the properties of the linear absorption and optical solitons in
an N configuration QW system under Raman excitation. It is
shown that a near-perfect double EIT appears with increasing
CCRLOP. Also the CCRLOP can be used to determine the
amplitude and the group velocity of the solitons.

This paper is organized as follows. We introduce a four-
level asymmetrical double semiconductor QWs model in an
N configuration system in Sec. II. Subsequently, the linear
property of this system is studied in Sec. III. In Sec. IV, we
derive a nonlinear Schrödinger (NLS) equation describing the
evolution of the probe field and its soliton solution. Further,
we discuss how the CCRLOP affects the characteristics of the
solitons. A brief summary is given in the final section.

II. THE FOUR-LEVEL N CONFIGURATION SYSTEM

Based on the recent experiment condition [7,44], we
consider a four-level asymmetrical double semiconductor QW
in an N configuration [13,29], which consists of a wide well
(WW) and a narrow well (NW) as shown in Fig. 1. In reality,
the coupled QW comprises 10 pairs of a 51-monolayer (145 Å)
thick WW and a 35-monolayer (100 Å) thick NW, separated
by a 9-monolayer (25 Å) thick Al0.2Ga0.8As barrier. Levels
|1〉 and |2〉 (solid lines) in a valence band are localized
holes states. Levels |3〉 and |4〉 (dashed lines) in a conduction
band are bonding and antibonding states, respectively, which
arise from the strongly coherent coupling between the two
wells through the thin barrier. Such a four-state asymmetric
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FIG. 1. (Color online) Schematic energy-level diagram and ex-
citation scheme of an asymmetric double quantum well in an N
configuration consisting of a wide well and a narrow well. Levels
|1〉 and |2〉 are localized hole states of the valence band. Levels |3〉
and |4〉 are delocalized bonding and antibonding electronic states of
the conduction band, which arise due to the tunneling effect between
the wells via the thin barrier. �p is the half Rabi frequency of the
probe field; �b and �c are the half Rabi frequency of the control field.
�j (j = 2, 3, 4) are single-photon detunings, and ωs is the energy
interval between levels |3〉 and |4〉.

double-QW structure interacts with a low intensity, linearly
polarized pulsed probe field (with half Rabi frequency �p =
μ31Ep/2h̄) and two strong linear-polarized continuous-wave
(cw) control fields (with half Rabi frequencies �c = μ32Ec/2h̄
and �b = μ42Eb/2h̄), where μij = μij · ẽL (i,j = 1,2,3,4)
are the dipole moments of the transitions |i〉 ↔ |j 〉, with ẽL is
the polarization unit vector of the laser field. The weak probe
field with center frequency ωp drives the transition |1〉 ↔ |3〉,
while the two strong cw control fields with center frequencies
ωc and ωb drive the transitions |2〉 ↔ |3〉 and |2〉 ↔ |4〉,
respectively. The electric-field vector of the system can be writ-
ten as �E = ∑

l=p,c,b �el εl exp[i(�kl · �r − ωlt)] + E.c., where �el

(�kl = nlωl/c) is the polarization direction (wave vector) of the
lth field with the envelope εl , nl is the background index of
refraction at frequency ωl , and c is the speed of light in vacuum.
Here E.c. represents the electric field complex conjugate.

We suppose that the carrier density in the wells is so
low that the many-body effects resulting from electron-
electron interactions may be neglected [45]. In the interaction
picture, by using the rotating wave approximation [21], the
semiclassical Hamiltonian of the system is given by

HI/h̄ = −�p|3〉〈3| − (�p − �c)|2〉〈2|
− (�p − �c + �b)|4〉〈4| − (�p|3〉〈1|
+�c|3〉〈2| + �b|4〉〈2| + iκ|4〉〈3| + H.c.), (1)

where H.c. represents the Hamiltonian complex conjugate.
Here �p = ωp − ω31, �c = ωc − ω32, and �b = ωb − ω42

are the one-photon detunings which denote the frequency

difference between the center and the interband transitions ωij

(i,j = 1,2,3,4) of the |i〉 ↔ |j 〉, respectively. By applying the
linear Schrödinger equation ih̄∂�/∂t = HI�, with |�〉 being
the electronic energy state, we obtain the equations for the
probability amplitude:

i
∂A1

∂t
+ �∗

pA3 = 0, (2a)(
i

∂

∂t
+ d2

)
A2 + �∗

cA3 + �∗
bA4 = 0, (2b)(

i
∂

∂t
+ d3

)
A3 + �pA1 + �cA2 + iκA4 = 0, (2c)(

i
∂

∂t
+ d4

)
A4 + �bA2 + iκA3 = 0, (2d)

with Aj being the probability of the subband state |j 〉 (j =
1–4) satisfying the conservation condition

∑4
l=1 |Al|2 = 1

and dj = �j + iγj . Here, �2 = ωp − ωc − ω21 = 0, indi-
cating that the two-photon resonance is always maintained.
�3 = ωp − ω31 and �4 = ωb − (ωp − ωc) − ω21 are one- and
three-photon detunings, respectively. γj = γjl + γjd depicts
the corresponding total decay rate of level |j 〉, where γjl

is the population decay rate of subband |j 〉, mainly due
to longitudinal-optical (LO) phonon emission events at low
temperature, and γjd is the dephasing decay rates of quan-
tum coherence of the |i〉 ↔ |j 〉 transitions, determined by
electron-electron scattering, phonon scattering processes, and
the elastic interface roughness. The parameter κ = √

γ3lγ4l

represents the cross-coupling of states |3〉 and |4〉, describing
the process in which a phonon is emitted by subband |3〉
and recaptured by subband |4〉 via the LO phonon relaxation.
The ratio ζ = κ/

√
γ3γ4 is defined to evaluate the strength of

the interference or quality of the cross-coupling of states |3〉
and |4〉. For example, ζ = 0 represents no interference, while
ζ = 1 means a perfect interference (no dephasing). In fact, the
strength of the cross-coupling between the bonding and the
antibonding states can be manipulated by the dephasing rates
which are realized on the basis of reducing the temperature
appropriately [35,42,43].

The equation for �p can be obtained by the Maxwell
equation

∇2 �E − 1

c2

∂2 �E
∂t2

= 1

ε0c2

∂2 �P
∂t2

, (3)

with �P = Na[( �μ13A3A
∗
1 + �μ23A3A

∗
2 + �μ24A4A

∗
2) + c.c],

where c.c. represents the complex conjugate. Here Na and
ε0 are the atomic concentration and dielectric coefficient
in vacuum, respectively. Under a slowly varying envelope
approximation, Eq. (3) is turned into

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p+ c

2ωp

(
∂2

∂x2
+ ∂2

∂y2

)
�p+ k13A3A

∗
1 = 0,

(4)

where k13 = 2πNa|μ13|2ωp/h̄c is the propagation coefficient.
The second term in Eq. (4) depicts the transverse diffraction
effect of the system. For simplicity, we assume that the probe
field is homogeneous in the transverse (x and y) directions.
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III. THE LINEAR PROPERTY

Here we first probe the linear properties of the system,
which are the major contributors to pulse spreading and
attenuation. We assume that the probe field is weak and
the ground state of the system is not depleted. By setting
A1 
 1, �p and Al (l = 2, 3, 4) being proportional to
exp[i(K(ω)z − ωt)], then substituting them into Eqs. (2) and
(4), the following linear dispersion relation is obtained:

K(ω) = ω

c
− k13

Dp

D
, (5)

where Dp = |�b|2 − (ω + d2)(ω + d4) and D = |�b|2
(ω + d3) + |�c|2(ω + d4) − (ω + d2)(ω + d3)(ω + d4) − κ2

(ω + d2) − iκ�∗
b�c − iκ�b�

∗
c . In the process of obtaining

Eq. (5), we have neglected the transverse diffraction effect
to leading order, which is usually very small. In most
operational conditions K(ω) can be Taylor expanded around
the center frequency ωp of the probe field, that is, ω = 0.
We thus have K(ω) = K0 + K1ω + 1

2K2ω
2 + · · · , where

K0 = φ + iα/2 describes the phase shift φ per unit length
and the linear absorption coefficient α of the probe field,
K1 = dK(ω)/dω|ω=0 determines the group velocity of
the probe field, and K2 = d2K(ω)/dω2|ω=0 represents the
group-velocity dispersion which contributes to the shape
change and the additional loss of the probe field.

To our knowledge, the imaginary part ImK(ω) and the
real part ReK(ω) of Eq. (5) characterize the linear absorption
and refractive index, respectively. So, In Figs. 2(a) and 2(b),
we, respectively, plot ImK(ω) and ReK(ω) as a function
of the frequencies ω with different control fields �c. From
ImK(ω) in Fig. 2(a), we see that, for a low control field
(�c = 0.5 meV), only a Lorentz line-shape absorption peak
appears. This implies that the probe field with central angular
frequency ωp (corresponding to ω = 0) is largely absorbed,
which is similar to when the control fields are switched off
(non-EIT). For a suitable middle control field (�c = 10 meV),
the absorption profile [see the red dash-dotted curve in
Fig. 2(a)] splits into two separate peaks, which is also called
the Autler-Townes absorption doublet [i.e., the case of forming
the EIT transparency window (TW)]. The suppression of the
probe-field absorption is caused by the quantum destructive
interference effect, which drives the strong control field and
then renders the population in levels |3〉 and |4〉 into dark
states. For a relatively strong control field (�c = 20 meV)
[see the black solid curve in Fig. 2(a)], the TW becomes
wider than that of �c = 10 meV. This illustrates that the
width of the EIT TW can be modulated by the intensity
of the control fields. Additionally, the parameters we have
chosen in our numerical estimation are suitable for typical
double quantum wells [13,43,44], which may provide new
possibilities in current laser experiments. From ReK(ω) in
Fig. 2(b), meanwhile, we find that the sign of the group velocity
of the probe field has changed from negative to positive
with the enhancement of the control field �c. This result
demonstrates that it is possible to obtain double switching,
in which switching from the anomalous dispersion regime to
the normal dispersion regime occurs.

We also expect that both the control field �b and the
cross-coupling LO phonon relaxation have an influence on

FIG. 2. (Color online) The linear dispersion relation: (a) the
linear absorption ImK(ω) and (b) the refractive index ReK(ω)
as functions of the frequency ω. The dotted, dash dotted, and
solid curves correspond to the Rabi energies �c = 0.5,10, and
20 meV, respectively. The other parameters used are �b = 0.5 meV,
k13 = 6.2 × 103 cm−1 meV, ωs = 5.46 meV, �3 = 0.67 meV,
�4 = 4.8 meV, d2 = 0, γ3d = γ4d = 2.58 meV, and γ3l = γ4l =
2.07 meV.

the TW width just as the control field �c. We show the
linear absorption ImK(ω) versus the frequencies ω in Fig. 3
under a fixed control field �b. From Fig. 3(a), we see that,
for a relatively low control field �b, there exists only a TW,
which is nearly identical to the results in Fig. 2. While the
cross-coupling coefficient κ increases, the width of the TW
becomes narrower and the amplitude of the Autler-Townes
absorption doublet decreases gradually [for clarity, also see
in the inset in Fig. 3(a)]. This means that the interband
excitation effectively heats the conduction electron system,
and, consequently, it enhances a secondary process (i.e., the
LO phonons of some possibly induce the indirect transition) in
the same conduction band [46]. When �b increases to 5 meV,
a small peak at the center of the Autler-Townes absorption
doublet appears [see the black solid curve in Fig. 3(b)].
This means that only if �b increases to an appropriate
value will a double EIT be able to form. Moreover, with
increasing κ , the center peak increases but the amplitude of
the Autler-Townes absorption doublet decreases continuously
[see the red dashed curve in Fig. 3(b)]. Interestingly, when κ

increases to 2 meV (which corresponds to ζ = 0.44, denoting
a relative strong interference between bonding and antibonding
states), an approximately symmetrical three-absorption-peak
configuration arises [see Fig. 3(b)]. The height of the third
absorption peak dominates by the interference strength and
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FIG. 3. (Color online) The linear absorption ImK(ω) versus the frequency ω with different control fields (a) �b = 0.5 meV and (b)
�b = 5 meV. The black solid, red dashed, and blue dotted curves represent cross-coupling coefficients κ = 0,1, and 2 meV, respectively.
�c = 10 meV; the other parameters used are the same as those in Fig. 2.

can be also readily explained in accordance with dressed states
[35]. This illustrates that there appears a near-perfect double
EIT phenomenon under the condition of strong interference
between tbonding and antibonding states in an appropriate
range of the control field �b.

IV. THE SLOW-LIGHT SOLITONS

We here focus on the propagation properties of a shape-
preserving probe pulse, which has applications to optical
transmission and information processing. Since Eq. (4) is
nonintegrable, its analytical soliton solutions cannot be ob-
tained directly. We therefore introduce a multiple-scale method
[13,27,47] to study the evolution of the probe field.

First, we make the asymptotic expansions A1 =
1 + ∑∞

j=2 εjA
(j )
1 , Al = ∑∞

j=1 εjA
(j )
l (l = 2,3,4), and �p =∑∞

j=1 εj�
(j )
p , where ε is a small parameter characterizing the

small population depletion of the ground state. Subsequently,
we assume that A

(j )
l (l = 1,2,3,4) and �

(j )
p are functions of the

multiscale variables tl = εlt (l = 0,1), zl = εlz (l = 0,1,2),
x1 = εx, and y1 = εy. Substituting these into Eqs. (2) and (4),
we have a series of equations in A

(j )
l and �

(j )
p :

(
i

∂

∂t0
+ d2

)
A

(l)
2 + �∗

cA
(l)
3 + �∗

bA
(l)
4 = α(l), (6a)(

i
∂

∂t0
+ d3

)
A

(l)
3 + �cA

(l)
2 + �(l)

p + iκA
(l)
4 = β(l), (6b)(

i
∂

∂t0
+ d4

)
A

(l)
4 + �bA

(l)
2 + iκA

(l)
3 = γ (l), (6c)

i

(
∂

∂z0
+ 1

c

∂

∂t0

)
�(l)

p + k13A
(l)
3 = δ(l), (6d)

where the explicit expressions of α(l), β(l), γ (l), and δ(l) are
omitted here. To leading order, one may get that �(1)

p =
F exp(iθ ) = F exp[i(K(ω)z0 − ωt0)], A

(1)
2 = [iκ�∗

b −
�∗

c (ω + d4)]F exp(iθ )/D, A
(1)
3 = −DpF exp(iθ )/D, and

A
(1)
4 = [�b�

∗
c − iκ(ω + d2)]F exp(iθ )/D, where F is a yet

to be determined envelope function of the slow variable
zl(l = 0,1,2) and t1.

For the second order, a divergence-free solution requires

i

(
∂F

∂z1
+ 1

Vg

∂F

∂t1

)
= 0, (7)

where Vg = Re(1/K1), which means that the wave packet F

propagates with the group velocity Vg .
To get the third order, the solvability condition yields the

NLS equation

i
∂F

∂z2
− K2

2

∂2F

∂t2
1

+ c

2ωp

(
∂2

∂x2
1

+ ∂2

∂y2
1

)
F

− W exp(−ᾱz2)|F |2F = 0, (8)

with ᾱ = ε−2α, and W = −k13Dp{|Dp|2 + |�c|2(|�b|2 +
|ω + d4|2) + κ2|ω + d4|2 + [iκ�b�

∗
c ((ω + d2)∗ + (ω +

d4)) + c.c.]}/(D|D|2), where W and c.c. represent the nonlin-
ear effect of the system and complex conjugate, respectively.
Combining Eqs. (7) and (8), we obtain

i

(
∂

∂z
+ α

2

)
U − K2

2

∂2U

∂τ 2
+ c

2ωp

(
∂2

∂x2
+ ∂2

∂y2

)
U

−W |U |2U = 0, (9)

where τ = t − z/Vg and U = εF exp(−αz/2). Equation (9)
is a complex-coefficient NLS equation including diffraction,
group-velocity dispersion, and nonlinearity. Such an equation
has also appeared in the study of pulse propagation in
nonlinear optical fibers and related media [48–53]. In general,
such a NLS equation is still nonintegrable. If the imaginary
part of the equation is much smaller than the real part,
a stable soliton solution of the equation should exist. By
neglecting its imaginary part, Eq. (9) is written in the following
dimensionless form:

i
∂u

∂ξ
− ∂2u

∂η2
+ 2|u|2u = id0u + ddiff

(
∂2

∂x ′2 + ∂2

∂y ′2

)
u,

(10)

where τ = τ0η, z = −2LDξ , d0 = 2LD/L0, U = U0u, ddiff =
2LD/Ldiff , and (x,y) = R⊥(x ′,y ′) with R⊥ the beam radius.
Here the characteristic dispersion length LD = τ 2

0 /K̃2 de-
scribes the effective dispersion distance of the probe field
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propagation, the linear absorption length L0 = 2/α depicts
the effective absorption distance of the probe field, the
characteristic diffraction length Ldiff = 2ωpR2

⊥/c represents
the effective diffraction distance of the probe field, and U0 =√

K̃2/W̃/τ0 is the typical Rabi frequency of the probe field
based on the equilibrium condition. In order to obtain Eq. (10),
we have supposed that LNL = LD (where LNL describes the
effective nonlinearity distance of the probe field), i.e., the
balance of the dispersion and the nonlinearity, for the purpose
of acquiring the formation of soliton. If d0 � 1 and ddiff � 1,
Eq. (10) can be simplified to a standard NLS equation, for
which the exact soliton solution is

u = 2βsech[2β(η − η0+ 4δξ )] exp[−2iδη − 4i(δ2 − β2)ξ ],

(11)

where the real parameters β, δ, and η0 determine the amplitude,
propagating velocity, and initial position of the soliton,
respectively. By setting β = 1/2 and δ = η0 = 0, Eq. (11)
turns into u = sech(η) exp(iξ ), so

�p = U exp(iK̃0z)

= 1

τ0

√
K̃2/W̃ sech

[
1

τ0

(
t − z

Ṽg

)]
exp

[
iK̃0z − i

z

2LD

]
,

(12)

which gives a description of a stable soliton traveling with
propagation velocity Vg . Here, the quantity with the tilde
means its real part, e.g., W̃ = Re(W ).

In order to explore the effect of the cross-coupling LO
phonon relaxation on the properties of optical solitons, we plot
in Fig. 4 the amplitude of optical solitons versus the CCRLOP
with different energy level splitting ωs . At ωs = 15 meV, one
can see from Fig. 4 that with κ increasing, the amplitude
of the solitons first increases and then decreases, with a
maximum amplitude existing at κ ≈ 0.72 ps−1(where 1 ps−1

corresponds to 4.12 meV). Here ζ ≈ 0.54 denotes the relative
strong interference between the cross-coupling states |3〉 and
|4〉. At ωs = 20 meV, the maximum amplitude appears at

FIG. 4. (Color online) The relative amplitude of the optical
solitons vs the cross-coupling coefficient κ for different energy level
splitting ωs . The other parameters used are the same as those in Fig. 2.

FIG. 5. (Color online) The relative group velocity of the optical
solitons versus three-photon detunings �4 for different cross-
coupling coefficient κ . The other parameters used are the same as
those in Fig. 2.

κ ≈ 0.5 ps−1 (ζ ≈ 0.45; also see the red dotted curve in
Fig. 4), which is smaller than that of ωs = 15 meV. When
ωs further increases to 25 meV (such as the blue dashed
curve in Fig. 4), the maximum amplitude is further decreased,
while its peak position is shifted at κ ≈ 0.36 ps−1 (ζ ≈ 0.37).
We conclude that, with κ increasing, the amplitude of the
solitons first increases then decreases and an amplitude peak
exists there. When the energy level splitting increases, the
maximum amplitude decreases and deviates to the smaller
side of the cross-coupling coefficient κ . This is because the
increase of energy level splitting leads to a decrease of the
spatial overlap of the cross-coupling between the bonding and
the antibonding states, and then gives rise to the decrease of
the soliton maximum amplitude.

We further show in Fig. 5 the relative group velocity (RGV)
Vg/c as a function of three-photon detunings �4 with different
cross-coupling coefficients κ . One finds from Fig. 5 that
for relatively small cross-coupling coefficient (e.g., κ = 0.4
and 0.8 meV, i.e., ζ = 0.13 and 0.24), the RGV is nearly
inversely proportional to the three-photon detunings �4. At
κ = 1.2 meV, with ζ = 0.32, the RGV decreases sharply
in the beginning stage and then approaches a constant after
�4 ≈ 0.75 ps−1 (3.09 meV). For a relative large κ (e.g., κ =
1.6 meV with ζ ≈ 0.38), the RGV shows a visible increase
after �4 ≈ 0.65 ps−1, while it exhibits a drastic decrease
at the starting time. A similar phenomena can be observed
when κ further increases to 2.0 meV, which corresponds to
ζ ≈ 0.44. For a fixed �4, meanwhile, the RGV of the probe
field continuously decreases with increasing κ . We find that
the strength of the interference between the cross-coupling
states has an important effect on the soliton group velocity.
For relatively weak interference (ζ < 0.32), the group velocity
decreases with increasing three-photon detunings �4. With
stronger interference (ζ > 0.32), the velocity exhibits an initial
decrease, which is followed by an a increase after passing
through a minimum value.
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V. CONCLUSION

In summary, we have studied analytically the optical
absorption properties and the soliton characteristics in a
four-level N configuration semiconductor QW system. We
find that, in the linear case, for a suitable Rabi energy �c, the
system exhibits an EIT window when the Rabi energy �b is
properly small. And the width of transparency window can be
controlled by varying the Rabi energy �c. Meanwhile, double
switching from the anomalous dispersion regime to the normal
dispersion regime can likely be achieved by increasing the
Rabi energy �c under Raman excitation. Furthermore, when
the cross-coupling coefficient κ increases, the width of the
transparency window becomes narrower and the amplitude
of the double absorption peaks decreases. Interestingly, a
double EIT is achieved under a relatively strong optical field,
which is from the hole and antibonding states in the wide
well. In particular, a near-perfect double EIT appears under
the condition of increasing the cross-coupling coefficient κ

together with an appropriate range of Rabi energy �b.
In the nonlinear case, it is shown that the cross-coupling

coefficient κ can determine both the amplitude and the group
velocity of the solitons. The amplitude of the solitons shows

parabolic changes and preserves a maximum value with
increasing κ . While the energy level splitting ωs increases,
the maximum amplitude decreases and deviates to the smaller
side of the cross-coupling coefficient κ . The group velocity
of the solitons decreases with increasing κ for fixed three-
photon detunings �4. For relatively weak interference, the
group velocity decreases with an increase of three-photon
detunings �4. For strong interference (ζ > 0.32), the ve-
locity initially declines then rises after reaching a minimum
value.
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